Speed (Part 1): Customized Training & Mechancis Series

Today’s focus will be on that speed portion of the force-velocity (F-V) curve.  This is exciting, to me at least, because throwing a baseball over 90mph requires a healthy does of speed.

For all of the articles that I’ve written about the F-V curve in this series about Customized Training and Mechanics I’ve used the picture that you see below which looks like it was created with sprinting being the sports specific action in mind.

So far I’ve gotten away with copying the exercises listed on the chart because we were talking about parts of the curve like strength, strength-speed, power and speed-strength that are pretty far away from where throwing a baseball would be located on the curve. In other words they are general and not specific. But now that we are getting closer to where pitching sits on the F-V curve we need to be more specific and that means we need to be throwing things and see how fast and/or far they go.

So to customize this F-V curve for pitching I would replace resisted sprints and sprinting with different types of throws.  Don’t get me wrong I like to get pitchers to sprint but throwing is a lot more specific and as a result we can use it to assess our pitchers to see where they are deficient.  If we were to test their sprinting ability it wouldn’t have much carry over.  This was the case in my thesis where none of the running tests (60 Yard Dash, 10 Yard Dash, Pro-Agility) had any correlation to throwing velocity.

Here are a couple types of throws that are fast (not as fast as pitching) that I would put on our baseball F-V curve just to the left of where pitching would be:

  • Throwing a Football
  • Flat Ground Throwing – stationary

I make a point of adding in the description of “stationary & flat ground” because we can’t generate the same kind of speed under these constraints that we get from throwing a baseball off of a mound.  So things like the Run n’ Gun throws or long tossing with a crow hop are actually faster than throwing off a mound and as a result would fall further to the right on the curve and are considered to be “over-speed”.  I’ll write about over-speed in a future article.

But for now I wanted to give some insight behind both throwing a football and flat ground pitching (next article) since they can be effective tools to improving Speed.

Tossing the Old Pig Skin

Throwing a football is the old school form of weighted ball throwing. While I don’t have any studies showing that training with football throws increases your mound velocity I will point out that 100% of all pitchers in MLB history with more that 5000 strikeouts have been known to throw a football with regularity.  That’s enough evidence for me.

Obviously throwing a football is different than throwing a baseball.  This is a good thing because we only need it to be “specific” and not exactly the same as throwing a baseball.

Here are some highlights of a study that shows how the two types of throws compare to one another based on research by Doctor’s Glenn Flesig and James Andrews where they looked at the “Kinematic and Kinetic Comparison Between Baseball Pitching and Football Passing”

“maximum angular velocity of pelvis rotation, upper torso rotation, elbow extension, and shoulder internal rotation occurred earlier and achieved greater magnitude for pitchers.”

Pitching is just a lot faster.  The lighter ball, sloped mound and the downward aim makes your arm move a lot faster which is caused by the faster pelvic and torso rotation.  These factors makes the elbow extend a lot quicker along with more internal rotation caused speed and magnitude of the external rotation

How much faster is the arm moving you ask?

“Maximum Shoulder Internal Velocity for pitching averaged 7550 degrees per second while the football throws came in at average of 4950 deg/sec.”

That is a huge difference between speeds!!  What’s interesting is that the amount of external rotation between the two is very similar.

“The amount of external rotation with the baseball and football were 173 and 164 degrees respectively”

The weight of the football (14-15 oz) is what causes the arm to layback into that amount of external rotation whereas with baseball its caused more by speed.  When the shoulders rotate towards home plate the arm is slammed back into this layback position.  Hopefully it can “bounce” back into internal rotation without much delay allowing for those speeds that were already mentioned.  This would be the stretch shortening cycle at its finest which has been predicted to contribute to upwards of 50% of the energy needed to throw.

“Maximum shoulder external rotation occurred earlier for quarterbacks”

Since the ball is heavier it will take more time to go from eccentric to concentric actions with a longer isometric contraction in between.  This longer isometric phase is a result of having to stop the external rotation of the loading phase which tougher due to the extra weight.  This delay will kill a lot of the elastic energy from the stretch shortening cycle.  Quarterbacks do still rely of elastic energy but just not as heavily as a pitcher does.

“During arm cocking, quarterbacks demonstrated greater elbow flexion and shoulder horizontal adduction.”

Their elbow is more bent (aka flexed) and the elbow is closer to your side (aka adducted).  This is generally what happens when you hold onto heavier objects.

Training with a Football

The take aways here are that we can get the same amount of external rotation without as much speed.  The weight of the football also provides an overload stimulus for our eccentric and isometric strength when the arm goes from external to internal rotation.

So essentially we can use it to “stretch” the arm out while strengthening it.  Stretching and Strength!!!  Sounds good to me.

Throwing a football isn’t just about training your arm.  By dropping back into the pocket with a 3, 5 or 7 step drop back followed by a throw we are able to train the legs too.  The action of dropping back will create a significant about of momentum that must be decelerated then accelerated in the opposite direction in order to launch the ball down field.  The back leg is responsible for this action and the added drop back movement creates overload stimulus as well.   I also like how the shin angle created with the drop back is something that we like to see on the mound again making it somewhat specific.

Here we see Big Ben having to stop A LOT of momentum going towards his own end zone before changing directions and throwing a bullet.

Start off with the 3 step drop and you can eventually add more steps and speed to this drill as the legs get stronger.

If you do throw a football around at practice be sure to use a football that is age appropriate.  If the ball is too big for their hand they really can’t throw with enough intent because their attention and focus is on balancing the ball.  Even though everyone uses the same 5 ounce baseball it might be a bit much to ask a young pitcher to throw a 15 ounce football.  Here are the different footballs and their weight that you can gradually make your way through.

  • Pee-Wee: Ages 6-9 – 10 oz
  • Junior: Ages 9-12 – 11 oz
  • Youth: Ages 12-14 – 12.5 oz

Assessing with Football Throwing

The whole theme of this series is to assess different areas of an athletic profile to see where a pitcher needs to focus their time and effort.  Ideally I would give you some standards of how far or fast someone should be able to throw a football to see if they score well in this “speed” column.

I don’t really have set distances or velocities for football throwing to give you since they don’t really exist in any type of literature that I’ve seen.  This doesn’t mean there isn’t some type of relationship between the two types of throws it just means it hasn’t been tested.

Here’s a link of Patrick Mahomes throwing a football 62 mph (go to the 3:05 mark) and he was reported to sit around 93mph when he pitched in high school.  Here’s he is pitching.

Assuming that a pitcher knows how to throw a spiral I would think that there is a strong relationship between pitching performance in the form of velocity and football throwing whether it is velocity or distance.  At the very least it would be a stronger relationship than max squat or deadlift due to specificity.  In my opinion the strength of this relationship would vary depending on the type of pitcher we are talking about.  Your “power” pitcher with big strong legs like the Nolan Ryan’s of the world would have a better correlation since their body and mechanics are suited for throwing heavier objects.  While a weaker pitcher that uses a combination of long limbs, mobility and elastic energy might not be able to throw bombs down field.

So I am sorry that I don’t have any actionable items or data to share but I still think that throwing a football is great for training purposes.  If I had to suggest something based off my own anecdotal evidence that would be easy to implement and test I would like to see a pitcher be able to throw a football from home plate to second base.  I like this because its scalable for younger players on smaller diamonds with age appropriate footballs as well.  For the big boys the throw from home plate to second is about 42 yards.  If you can’t throw a football this far with a bit of an approach like a shuffle then I would suggest that you can benefit from time and effort training with a football to improve your strength which in turn can help increase your pitching velocity.

Hopefully this information is useful and if there is anyone out there that has played around with these two types of throws I would love to hear from you.

Graeme Lehman, MSc, CSCS





Customized Mechanics: Speed-Strength

Only a couple of more articles to go until I have finished this whole series on to customize pitching mechanics and training  to a specific pitcher based on their unique profile.  If you don’t know about this profile check out the graph below to see what I am talking about.

pitching chart 2.003


Here are links to the other parts of the profile for you to check out.  They are long and in-depth but I’ve been getting some tremendous response to this whole series which to me means that I am onto something big and hopefully it can help out a lot of people.

And here are a couple of extra posts that complimented this whole series:

Over all that’s a total of 16 articles and almost 30,000 words and there’s still at least 3 articles to go including this one which will focus on the role that speed-strength plays in the athletic action of pitching a baseball.

Speed-Strength is defined as “speed in conditions of strength”.  This means that speed is the first priority and strength is secondary.  So we will be using a light weight and we are moving it quickly.  How fast you ask? In the range of 1.0 to 1.3 m/s if we were to measure bar speed.


I’ve spoken before how the pitching delivery from start to finish looks a lot like the force-velocity curve going from left to right.  We start at a complete standstill (low velocity) and have to get our entire body (high force) moving and we end with our arm moving very fast (high velocity) with the goal of throwing a baseball (low force) as fast as possible.

To test a pitchers speed-strength abilities I would like to plead my case for some good old fashion medicine ball throws like we see on the force curve above as an example of what kind of training fits each part of the curve.

The fact that we are throwing something is huge since at the end of the day that’s we are doing on the mound which makes it specific to a certain extent. The act of throwing and letting go of the med ball is what allows us to achieve the kinds of speeds that we need in order to hit this part of the curve.  In the section on strength-speed I mentioned how when we lift a barbell a good portion of each lift is spent decelerating the bar even if our intent it to accelerate and the weight on the bar is low.

Which Type of Medicine Ball Throw Should We Test?

The type of medicine ball throw that I personally like is the scoop toss which I’ve also called the keg toss or backwards medicine ball throw for distance.  It looks like this:

The reason I like is that it is:

  1. safe
  2. easy to learn quickly
  3. easy to measure
  4. decent predictor of throwing velocity

1 – Obviously it being safe is the first and most important aspect of any test/assessment.  In the case of the medicine ball throw it doesn’t have any eccentric components so we won’t make our athletes sore from performing this movement.  The speeds that you can create throwing a medicine ball aren’t nearly as fast as throwing a baseball so their safe plus you’re using both arms and the elbow joint stays the same.  No Tommy John’s will be caused by performing this assessment.  The only way I can see someone getting hurt is if they throw it straight up in the air and having it land on themselves

2 – This brings me to point number two, its easy to learn.  After a couple of attempts most players will figure out their release point so that it maximizes distance, think launch angle.  I have seen a couple of a powerful athletes not score too well due to either pop ups or line drives but given time they figure it out.

And if they haven’t figured it out after a couple of weeks you can of this as a skills assessment because if they can’t figure out this release point good luck getting them to throw a breaking ball or change up for a strike.

3 – The scoop throw can be measured in a very objective manner with a simple tape measure.  Sure there are plenty of rotational medicine ball throws that are even more specific but they can’t be measured unless you have a really expensive medicine ball with an internal accelerometer.  I’ve seen research where radar guns have been used but I know that a lot of radar guns don’t do a great job of picking up slower speeds.   Plus not everyone has access to radar gun but a tape measure is pretty easy to get your hands on.

4 – In my thesis the strongest predictor to throwing velocity were the lateral jumps however the next best was the scoop toss.  Specifically with right handed subjects and their throwing velocity with a shuffle.  When combined with the lateral jump they scored an R2 value of 0.34.

Here is a scatter plot of med ball scoop throwing distance and pitching velocity with the College of Central Florida Patriots from 2017 when I was consulting with them.

Its a pretty strong correlation here but a couple of things are different from this data compared to the numbers I gathered for my thesis. The first is that this is just the data from the pitchers throwing from a mound whereas the data I had in my thesis had both position players and pitchers throwing from flat ground.

This team tested with a 6 lbs med ball and the average throw was just under 60 ft while the mound velocity for this pitching staff was 85.7 mph.  But as you can see from the graph there was one big outlier in terms of the throwing velocity and that is Nate Pearson who was only throwing 94 mph here.  I say only because he has been known to hit triple digits but this was in the fall of his first and only year at College of Central Florida.  He also ranked #1 in med ball throwing distance with a monstrous 73.5 ft throw.

Why is it a Strong Predictor?

Why does this test do a good job of predicting throwing velocity?  I can think of three major factors come into play that I think cause a relativly high correlation for throwing both a 6 pound medicine ball and a 5 ounce baseball.

The first is a that both require an athlete to produce high levels of speed-strenght. The other two are body weight and arm length.

Having longer arms essentially turns you into a human catapult so assuming you have the same level of speed-strength as your T-Rex teammate you should out perform them for this test.

Image result for trex hates pushups

T-Rex Hates Med Ball Throws Too

Being heavier has almost always been shown in the literature as a strong predictor for throwing velocity in baseball since the name of the game is transferring momentum to the baseball.  So more weight means you have the POTENTIAL to transfer more momentum to the ball no matter if it weighs 5 ounces or 6 pounds.

Since not everyone is going to be able to throw the med ball very far due to a potential lack in  speed-strength, arm length or body weight I wanted to end with an idea of how to test and train with the scoop toss.

Find a lighter med ball that you can throw at least 30 ft and stick with it until you can get beyond 60’6″.   This distance was selected for obvious reasons.  For young athletes use their age appropriate mound distance.

Once you’ve accomplished this goal you would then grab the next heaviest med ball and repeat the process.  Pretty simple, but not easy.

If you’ve made your way all the up a 60’6″ foot with a ten pound ball and you’re still aren’t throwing a baseball from a mound at 90mph or higher then you need to look else where for improvements because you have tapped out what you, as a pitcher, can get from the speed-strength column.

Graeme Lehman

It’s Time to “Drop” Bad Cues & “Drive” Towards Better Ones

First of all I need to apologize for that cheesy title but I really wanted to write this article even if I couldn’t come up with anything better.

My goal in this article is to convince you that we should do away with the terms “tall n’ fall” and “drop n’ drive” and replace them with words that do a better job of describing the athletic nature of throwing a baseball.  If you’re reading this site you probably don’t use these terms anyways but you will undoubtably come across some coaches that do because that’s what they were told.  So please show them this article which will hopefully at least start the conversation of how to improve things, even if you don’t agree with the changes that I suggest.

This is something that I’ve been thinking about for a while now but I finally got the motivation to put my thoughts down on paper because of this little guy in the picture below.  This is my son who is about 8 weeks old in this picture when I first measured his shoulder mobility.  Joking of course.

Only time will tell if he’s going to get into baseball but if he does I don’t want him to be subjected to this outdated and plain old bad coaching terms that I was.  Since baseball isn’t the fastest at doing away with the old and in with the new, I wanted to get the ball rolling on this terminology change now.

I have a particular hate for these terms because as tall kid I was told many times to be “tall” and then “fall” towards home plate in order to take advantage of my height and leverage.  This robbed me of what little athletic ability I had and in essence neutralized any leverage I possessed.  When I look back at pictures of me as a kid before I was “coached” my delivery was a lot more athletic than anything I could find from my days after I was exposed to the “Tall n’ Fall” strategy.  Pictures from my high school and college days are too embarrassing to post.  This is one of those cases where no coaching is better than bad coaching.

This post isn’t about me bashing my old coaches and blaming them for fact that I am not in the show right now instead of writing this blog.  The coaches I had growing were great men but they were doing their best with what they thought was the best information out there at the time.

So here is what I hope to give this great game by making my case for why we should adjust these terms to help future generations of pitchers.

Replace Drop n’ Drive with Dig n’ Drive

Replace Tall n’ Fall with Press n’ Pop

As you can see one of the four terms hasn’t changed and that’s because I went all Bruce Lee on the situation and absorbed some but discarded most of it.

Image result for absorb what is useful discard what is not

What to Absorb

Short n’ Sweet: coaching instructions need to be quick and to the point since the human brain can’t think about too much when its trying to perform a very complicated movement, like throwing a baseball past a hitter to a small location with runners on base.

The term “Drive”:  this is the one term out of the four that I want to keep since it is a great cue that conjures up images of being an athlete with the lower body.

Classification:  because we have used these terms for such a long time they’re a part of the baseball language which allows for better communication between all parties involved.  We all know that Randy Johnson is the poster child for the “tall n’ fall” style while Tom Seaver represents the other far end of the spectrum with his famous “drop n’ drive” technique.

What to Discard

I want to discard the terms “tall”, “fall” and “drop” since they’re passive and don’t come close to describing the kind of actions we would like to see from the lower body when the goal is to throw a baseball really hard.  If you tell anyone to be “tall and fall” you will basically paralyze that person from the waist down so in my opinion it has to be improved.

The same goes for term “drop” which doesn’t paint the kind of image we want our pitchers to think of when they need to load up their back leg and hip.  This is why I want to replace them with action verbs like “dig”, “press” and “pop” which do a much better job of painting a picture of what we need them and their muscles to be doing.

Even though we are simply changing a couple of words we have to realize just how powerful the words that we select are and the affect they have on our athletes.  And we can’t just keep using the ones that our coaches used because there’s a lot more information out there as to what works and what doesn’t work.

This information can be found in the scientific field coaching cues (if you’re looking it up on Google scholar or Pubmed type in “focus of attention”) and I’ve be very interested in this area since attending this presentation by Dr Nick Winkleman about 3 years ago.

Image result for what we say matters nick winkelman

This guy is the industry expert in coaching cues, in fact he completed his PhD in this field.  Dr. Winkleman was one of the first coaches at Athletes’ Performance, which is now EXOS, and his specialty was preparing NFL hopeful’s for the combine.  Despite his in depth knowledge of running mechanics and how to train these athlete’s in the weight room he wasn’t seeing the carry over that he wished for when it came to their sprinting ability.  This lead him down the path of studying the science of coaching and has since popularized, through articles and presentations, the research in this area that has always been thought of as more of an art than a science.

The most prevalent research out there now is the difference between external cues and internal cues.  An external cue places the attention of the athlete outside of their body whereas an internal cue places in their body.  For example here are two cues for jumping that are saying the same thing in different ways:

  • “push the ground away” – external cue
  • “extend your knee and hip” – internal cue

In the research external cues have out performed internal cues for athletic abilities such balance, power, speed and aim.

So external cues are better which is pretty clear but “fall” and “drop” are external cues as well so we have to take things a step or two further.  In order to make external cues even better let’s follow Dr Winkleman recommendations with what he calls the 3D’s.

Inline image 1

Distance – Generally speaking cues that shift your focus further away have outperformed cues where the focus is closer, link to article, even if both sets of cues are external.  For this particular cue with pitchers the furthest we can get is the mound when it comes to putting energy into the ground with either the DIG or the PRESS cue.

Direction – Here we need to think about whether we want to have our pitchers focus on moving TOWARDS home plate or moving AWAY from the rubber.  In some studies by Porter they looked at the difference in standing long jump ability when they told the athletes to either (a) jump as far past the start line as you can or (b) jump as close to the cone as possible.  When athletes were jumping towards a target, the cone, they performed better compared to when they were jumping away from a target.

This is one that we might want to be careful with since our goal with the back leg isn’t always to produce as much power as humanly possible since some pitchers can get carried away and cause problems with timing further up the chain.

It should be worth noting that if you have a strong athlete they might like focusing on driving away from the rubber as it allows them to generate more muscular force.  While your springy/elastic pitchers might like focusing on moving towards their focus.

Description – This is probably the most important component of putting together quality coaching cues because it puts things into context for the athlete.  Dr Winkleman talks about how we need to be careful about which action verbs we select because they define the spatiotemporal aspects of the movement.  Spatiotemporal means space and time, both of which are obviously pretty important when it comes to pitching.  As an example Dr. Winkleman compares the action verbs of push and punch.  Both can be thought of as performing the same action but if we punch, the action is going to happen a lot quicker compared to pushing.  In our pitching example the “drive” to me is slower than a “pop”.   In the next article I will explain my use of the word “pop” which my not be the best verb for everyone but its way better than falling.

Another important component of a useful coaching cue is to use analogies.  In sprinting for example, during the acceleration phase you might use the analogy of “taking off like a jet” to help communicate with the athlete that they can’t stand up too tall right away.

In our case with pitching I would try to paint the image of digging into the ground with a shovel.  Hopefully they get the idea that they have to put their weight onto that back leg to put some force into the ground.  This way you can elaborate a bit with the coaching cue by saying “Dig into the ground as if you were using a shovel”.  If the athlete doesn’t get the idea grab them a shovel since every baseball field in the world has a shovel or two lying around. Just be sure to find them a firm piece of dirt to work with!!

Inline image 3

On the other end of the spectrum the action verb of “Pressing” should also give the athlete a better idea of what’s happening with the muscles and tendons in the back leg.  You can paint the picture in the athletes head about how the mound can be one big spring that you need to press into in order to get energy back.

Inline image 1

In the next article I will elaborate on things a bit more as to why I choose these action verbs and which ones will work for which athletes.

Graeme Lehman, MSc, CSCS

Customized Mechanics – Weighted Jumps

When I started this series, which I hope to finish someday, the whole idea was to talk/write my way through a battery of tests and assessments that can be used to build profiles that give us a quantifiable data about each athletes physical abilities and attributes.  The goal then is to use this information to help adapt the training and coaching to suit the athlete and their unique physical profile.  Too often its the other way around where the athlete is forced to try and adapt to one type of training and/or coaching that may or may not be suited for them.  This approach will work for some athletes just by chance but if you want to increase your ability as a coach to help each athlete then we another approach.  To illustrate this point I will highlight a great research study at the end of this article which proves this point.

With this in mind I am really excited to be talking about weighted jumps because they’re a great tool to help build out some key parts of this physical profile concept.  Plus they’re an awesome training tool that can help increase the amount of power that our athletes can produce in a safe manner.  It’s awesome anytime we can pick an exercise that kills two birds with one stone saving both time and energy.

First lets talk about why they’re a great training tool before we get into the profiling part of the conversation.

To start weighted jump performance has been correlated to athletic performance with tests like vertical jump as well as 10 and 20 meter sprint times (proof, proofproof).  This should be enough reason to put them into your training but I will keep going on in case you aren’t convinced.

Weighted jumps as you will see in the force-velocity graph below fall between the “strength-speed” and the “Power” sections on the curve.  This “Power” section on the curve relates to a sweet spot where we can produce the most, you guessed it, power.  Remember that power is the product of Force x Velocity and when we use weighted jumps we have the ability to display the highest amounts of power compared to any other type of training.  When we look at heavy squats for example they have lots of Force but very little Velocity where as plyometrics or jump training has lots of Velocity but very little Force which causes both types of training to come up short when we measure how much Power they produce.


So just how Powerful are Weighted Jumps? 

Here is a link to a study that had a subjects produce upwards of 5783 Watts with weighted jumps while this study was a bit more modest but still had subjects pumping out 4600 Watts.  This might not mean much to you until you realize that elite level Olympic lifters who have spent years perfecting their technique and weighed around 220lbs produce 4700 Watts while other studies have shown numbers more in the 4200 and 4300 Watts range.

How to Do Them

Basically you just jump with a extra weight loaded to your body.  Ironically jumping with a weight is how Olympic lifting is often described when coaches tell you to “triple extend” through the hips, knees and ankles.   The two most common methods are either using a bar across your shoulders (back or front squat) or holding the weight in your hands like dumbbells or a hex bar.  The only risks that are associated with weighted jumps are during the landing because of the extra stress.  Be sure to practice these with lighter loads but they’re very easy to learn and get used to which again makes them superior to Olympic lifts.

With the weights in your hands it’s easier to decelerate and its also been shown to outperform weighted jumps when the bar is on your back in regards to the amount of power being produced, this study again.  By having the weight up on your shoulders your centre of gravity is higher making the landing a bit more difficult plus your neck/spine has to absorb the weight of the bar.  Its still a practical exercise but its just takes a bit more skill.

Here is an example of what I am talking about with two different types of loaded jumps.  This one above is of Isaac Greer who can throw in the mid 90’s and was just ranked #31 on Baseball America’s players to watch at the JUCO level.  I’ve had the pleasure of training him both in person and remotely since he was 14 and he has served as a guinea pig for me multiple times.  Here he is doing a weighted jump with 95lbs.  In his defence this was the first time we had done this type of drill so he was still getting used to it.

Next is a Hex Bar jump demonstrated here by the Toronto Blue Jays Nate Pearson who can reach triple digits!!!

This looks a lot smoother but that might be due to the fact that this wasn’t his first time doing this.  I have this video because he, along with his teammates at College of Central Florida, were asked to submit video of their training during the winter break.  So he had performed this exercise a bunch of times under the supervision of his coaches.  My only contribution was putting the program together and even though I was literally thousands of miles away from these guys I felt comfortable with them doing this simple exercise  so I didn’t think twice about adding in into the program.

How Much Weight

Depends on your goal because of the principal of specificity.  This means that if you want to get better at moving faster with lighter loads then this how you should train.  In this study they found that when subjects trained with weighted jumps that were only 30% of their 1RM squat they reduced their 20 meter sprint times.  While the group that trained using weighted jumps with 80% of their 1 RM ran slower times compared to the testing at the start of the study.

This isn’t to say that heavy weighted jumps are bad once you get used to them since I think they can play a pretty significant role in helping develop the kind of lower body power that we can use on the mound.  After all we are starting from a complete stand still on one leg which to me means that heavier jumping loads have their time and place.  This is especially true if you need to specifically develop this kind of strength.

But how do you know if you need this type of strength?  You test it of course and this is leads us to my favourite aspect of weighted jumps and that’s the profiling aspect.

Jump Profiling

By measuring your jump height with a wide range of loads you can cover most of the force-velocity curve.  From here you can compare these jumps to one another to see what your profile looks like.  I’ve mentioned the MyJump app before as being the best $7 I’ve ever spent but it just keeps getting better.  The app can do all the math for your which is backed up by study after to study to give you an accurate profile.  Depending on your results you might need to spend more time getting faster by developing your velocity or you might need to spend time getting stronger to increase your force.

Here is what Isaac’s jump profile looks like with a set of 5 jumps with different loads.

17.9 Inch Jump with No Load 

15.6 Inch Jump with 25lbs

This one isn’t quite the same as the others since it is a ball rather than a bar or a stick and if you watch closely you can see him drive the ball up with his arms which might have bought him a little extra force.  But I wanted something to fill the gap between the non-loaded jump and the 45lbs bar seen here.

13.7 Inch Jump with 45 lbs

12.1 Inch Jump with 65 lbs

9.1 Inch Jump with 95 lbs

When you plug this this info into a the My Jump App here is the print out you get that graphs these jumps with the insight as to what should be trained.  This print out has a lot of cool information like the how much force is being produced and how fast the athlete is moving but the main take away here is that it spells it out for you what the athlete needs.  And in this case is clearly says “Velocity is to be developed”.

I am still trying to learn this stuff a little better myself but its great that it tells you exactly what needs to be done.  If you want to learn more about interpreting these results check out this study.

These results make sense to me because this kid loves the weight room and hasn’t gone more than a couple of days in a row without going to the gym since I’ve known him.  As a result I’ve been trying to help him develop more speed since he is “strong enough” with some fancy training programs like French Contrast Training and Tri-Phasic methods that aren’t for everyone but can help those that have a solid foundation of strength.

This approach of prescribing exercises based on what the athlete needs based on their profile has been shown to work in research.  This is one of the better studies that I have read in a while since it took a customized approach rather than splitting subjects/athletes into two groups, control and experimental.  In this study they still used a control group but the experimental group was split into different groups based on the results of their vertical jump profiling.  After each athlete was profiled at the start of the study the subjects that needed to work on on more velocity were given a training program with more speed and speed-strength exercises while those that were deemed “force deficient” were given a program with more strength and strength-speed exercises.

But did it work?  It did work and the results were amazing!! In the experimental groups all 46 subjects improved their vertical jumping ability while those that weren’t given customized programs only  had 18 out of 38 subjects improve their scores with a “cookie cutter” program.

This shows how powerful this type of assessment can be and how it can help you make the most out of your time and energy.  This was the same type of idea that I was trying to describe in my Elasticity articles, here and here,  when we look at the difference between drop jumps, countermovement and squat jumps.

How does this relate to pitching?

Once you have this information what do you do with it?  Do you try to sure up your weakness’ or do you fortify your strengths?  When it comes to training in the gym the above study shows pretty clearly that you need to focus in the area that you’re deficient but when you’re on the mound you must rely on your strengths.  I would suspect that the athletes who are strong but slow would benefit from more of a drop n’ drive style of pitching and vice versa.  But if an athlete works on changing their profile they would also need to adapt their mechanics as time goes on to take advantage of their physical abilities and attributes.

All very complicated things I am still trying to wrap my head around.

In keeping with my goal of trying to keep this under 2000 words I will end things here before coming back with the next instalment in this series when we talk about speed-strength.

Graeme Lehman, MSc, CSCS





Strength-Speed: Customized Mechanics

First of all I am really sorry about the length of delay between articles but I’ve got a couple of really good excuses that I will be sharing soon.  Unlike most excuses these ones are legit and have made me even more motivated to keep studying and writing about baseball performance.  I am hoping that it turns into more writing!!

For now let’s get back to this series that I call “Customized Mechanics” where I am working my way through this idea of building mechanics and training around each athlete and their physical profile like we see here.

Today’s focus is going to be on “Strength-Speed” which is a type of strength that is described as moving a moderately heavy load at a moderate speed.  This is really important because when we initiate the pitching delivery we are in fact moving a moderate load, in the form of your own body weight, at a moderate speed, before moving faster and faster as we climb the kinetic chain and let go of the baseball.

To put some numbers with the term moderate we can think of the load as being about 75-85% of 1RM while the speed is in the 0.75-1.0 m/s range.  The intent on moving the load however should not be moderate since you should be moving at a max speed but due the load the speed then slows down to this “moderate” range.

Looking at the chart below we can see some of the exercises that are associated with this part of the force-velocity curve.  These types of exercises we can help us both measure how much “strength-speed” an athlete has as well as providing a means to train and improve this area, if this particular athlete needs to spend time and energy improving this athletic quality.

The two types of exercises that we see  on either side of “Strength-Speed” are Olympic Lifting and Weighted jumps which I will dedicate an entire article for each one.  But before we move onto the controversial topic of Olympic Lifting for baseball players I do want to mention that traditional lifts like  deadlifts, bench press or squats can also be performed in this range of moderate load and speed.  But its harder to use them as an assessment tool since approximately 34% of each lift is spent accelerating while the remaining 66% is spent decelerating the weight.

Olympic Lifting – The Controversy

Olympic lifting for baseball is a controversial topic but controversy gets peoples attention.  In fact there is a good chance that you are reading this site due to the fact that I did an interview with Eric Cressey discussing my research since it helped him justify why he doesn’t use Olympic lifting with his baseball players, in particular pitchers.   Eric wanted to talk with me because he was receiving a lot of criticism when he wrote that he doesn’t use Olympic lifts and for some strength and conditioning professionals this was blasphemous since Olympic lifts are held in such high regard for some coaches.  But like any exercise or drill we must weigh the risks vs the rewards to see if it is the right tool for the job.  In my opinion traditional Olympic lifts like the clean and snatch do not provide enough rewards to outweigh the risks which could be an injury to the wrist’s and elbows which was Eric’s biggest concern not to mention the fact that it isn’t a great predictor of throwing velocity since it isn’t specific enough to the movement.

Now I don’t like to work with absolutes nor do I want to throw the baby out with the bath water here because the lower body power that can be attained from moving a moderate load at a moderate speed can definitely help out when you’re on the mound.  This is especially true of weaker players.  So instead of dismissing them all together I suggest we go all Bruce Lee on them by “absorbing what is useful” and “discard what is useless”

We want to absorb from Olympic lifting the ability to train the lower body with the right mix of resistance and velocity.  What we want to discard however is the catching of the weight which increases the chance of injury.  Learning how to properly catch the weight takes a long time which is another con in using this form of training.  Could this time and energy be spent else where?  This is a question that you have to ask yourself.  Even if you are proficient at catching the barbell it only takes one bad one to ruin your meal ticket (aka your throwing arm).   Plus there’s a good chance as a pitcher you have long forearms which are great for throwing a baseball but are bad when it comes to catching a barbell in the proper position.

So let’s look for a “Win-Win” situation so can work on producing this type of force with the lower body without having to catch a heavy barbell on our shoulders and wrists.   Movements like jump shrugs or high pulls allow for us to “reject what is useless and accept what is useful”.  These are known in the S&C world as Olympic Lifting derivatives.

In fact there is research papers like this one or this one out there that show that Olympic weightlifting derivatives that don’t include the catch phase like a high pull or jump shrug produce just as much benefit.  If that isn’t enough here’s some research that demonstrates that the derivatives without the catch were even better.  Finally here is one last research article that is specific to baseball.  Hopefully that’s enough academic proof to keep the Olympic lift traditionalists from calling me out and if they want some “real life in the trenches proof” we can look at Eric Cressey again who still doesn’t use them much, as far as I know, and he has both the NL and AL Cy Young award winners in his gym!!!

If we are going to use these types of lifts then we need to find a way to quantify them and the best way to do this is to measure bar speed.  Radar guns don’t pick up barbell velocity very well so if you want to use Olympic lifting derivatives to assess how much “strength-speed” a particular athlete has then you need to get your hands on a device like the tendo unit, bar sensi or push device.

The reason that you need to quantify the speed is that if we only use the weight on the bar as a guide the Olympic lifts tend to be too slow in order to get the benefits we want from training in strength-speed zone.  I’ve mentioned this before idea before here when I read an article by Dr. Bryan Mann who is an expert in the field of velocity based training.  He recounts a story about how he measured the velocity of the Olympic lifts with his football team when the weight on the bar was the primary focus.  When he measured the speeds they were in the 0.6 to 0.8m/s range when his guys were performing hang cleans so it was only the fastest guys that were just barely in this “strength-speed” range of 0.75 to 1.0 m/s.  The proof that it was too slow came when they tested vertical jumps and didn’t see any improvements.  But when the speed of the bar became the focus the jump heights went up.  Jump height is a far better indicator of on-field football performance which is the reason we don’t see Olympic lifting at the NFL combine.

Remember that we are using the weight room as a means to increase our performance on the mound.  The fact that we aren’t lifting the weight with one leg in the frontal plane, like we see on the mound, still means that the benefits that a pitcher gets from using Olympic lifts, even if they are performed fast enough and safe enough, might not be the right choice for each athlete.

But I do really like how they can be used to help an athlete initiate power from a complete stand still. This is an area that I feel a lot of players with lots of mobility, elasticity and limb length could use since they can’t get enough FORCE in the first place in order to take advantage of these qualities which help produce SPEED.  Remember that FORCE x SPEED = POWER.

So if a player is generally weak like we talked about in the absolute strength article it is pretty safe to assume that their strength-speed isn’t very good either.  Personally I like to use some traditional lifts like squats and deadlifts with an emphasis on speed to help increase this quality while also making them stronger overall.  Even if the bar spends more than half the time slowing down I still take it over trying to catch the weight.

Even guys that have lots of absolute strength can benefit from this type of training if they can’t move 75-85% of their 1RM in that speed range that we are looking for meaning that this player is strong but slow which doesn’t allow for max power when we are talking about a 50z baseball.

To sum things up here I think that in most cases Olympic lifts don’t provide baseball players the biggest bang for their buck but if you are going use them I suggest:

  • not catching the weight
  • starting from a standstill
  • measure bar velocity

The next part of this series will talk about weight jumps as we make our way towards “speed-strength”.  This one should be fun to put together since I have some examples of guys that can throw 95mph+ doing some weighted jumps.

Until then stay strong but stay fast

Graeme Lehman, MSc, CSCS


Throwing with Intent Webinar

I wanted to give everyone who reads this site access to a webinar I created earlier this year since it has been a while between blog articles and I don’t want to lose you.

This webinar is from a online summit I was part of that Bill Massulo organized.  I’ve agreed to do another for this years summit and I will keep you posted.

This webinar,like a lot of my articles, is long but it covers a lot.  The theme of the summit was intent so I tried by best to define that term and how we should use sound scientific mechanics along with proper coaching cues.  The final part of the presentation is a bit of a summary of my series on customizing mechanics, training and cues to suit the individual athlete.

Graeme Lehman Webinar Link

Here are some approximate start times for different sections of the presentation:

  • What is Intent – 7:00
  • Research on Mechanics – 11:00
  • Mechanics summary – 28:00
  • How to teach with Better Cues – 31:00
  • Coaching Cue Checklist – 56:00
  • Customizing Mechanics – 57:00

I hope you enjoy it and get something out of it that you can use.  I am honored when anyone will take their time to listen or read something that I’ve created so thanks again for your patients and I will be pumping out some hopefully high quality content very soon.

Graeme Lehman Webinar Link

Graeme Lehman, MSc, CSCS




Customized Mechanics – Max Strength

This article is going to focus on the type of strength that most people associate with the weight room or use when describing someone as being “strong”.   In the previous article we learnt about the different types of strength and where they sit on a force-velocity curve.

Lifting heavy weights has always been controversial in baseball.  Years ago everyone was warned not to lift weights in fear of getting too big and bulky which would cause a restriction in mobility .  Then the steroid era shed some light on how stronger muscles created an obvious advantage that a baseball player can use to produce the kind of power needed to launch a baseball out of a hand or off a bat.

Image result for jose canseco weight training book

One of these two players admitted to using steroids – can you guess which one?

So being strong is a good thing, but exactly how strong do you need to be?  What kind of numbers should you be aiming for in the gym?  The answer to this question is that it depends.  We have to look at all the other parts of that athletes physical profile to see how this piece of the puzzle fits.  The guy that’s super long and lanky doesn’t need to impress you in the weight room and keep up with his teammates squat totals in order to light up a radar gun which means that the answer of how strong YOU need to be falls within a range.

And yes there is an upper limit on this range meaning that you can have too much of a good thing.  This was the same when we explored other parts of the profile like anthropometrics and mobility.

Can you be too strong?

The reason why I want to place a limit on getting stronger is because as you start to climb higher and higher you begin to experience what’s known as diminishing rates of returns on your investment.  This means that if you worked in the gym to get your squat to go up from 100 lbs to a 200 lbs you would see a rise in your fastball velocity of let’s say 10 mph.  That’s a good investment.  If you went from a 200 lbs to 300 lbs you might get another 5 mph which is still a good investment, but not as good.  If you then tried to go from 300 lbs to a 400 lbs you might only see your velocity go up just a little if any. This is a diminished rate of return on your investment.

What are you investing?  The two most valuable resources that you have as an athlete; time and energy.

These resources are both limited meaning that each athlete needs to think hard about how they should spend these valuable commodities.  If you’re already strong enough then maybe you should focus on getting faster with other types of strength which are more at the velocity end of the spectrum.  Or how about learning to throw your change-up in a fastball count, I hear that’s important.

The diminished rate of return is a result of the fact that moving a heavy weight really slowly is so far away from where throwing a baseball is when you look at them on the force velocity curve. This means that they aren’t very specific to one another.  This is what Dr. Mann discovered when he tried to use heavy Olympic lifts to increase vertical jump which aren’t that far apart on the curve but far enough that he needed to make a change in their training.  It was only when he lighted the load and stressed speed that he saw positive returns on his investment.  Read the details here about 3/4 of the way through the article.

My last argument about getting too strong is probably the most important which is the risk of injury. Even if you are performing these lifts correctly they’re stressful on the body and from what I’ve seen in my professional career and on various social media sites the cases of bad technique highly out number the good ones.

I don’t know what you would call this exercise because it definitely isn’t a squat!!

Why Absolute Strength is a Good Thing

Before we go any further I want to state for the record that I am a big fan of making guys stronger, after all I am a strength & conditioning coach.  Most players don’t have to worry about being too strong anytime soon because it takes a lot of time and effort to reach these levels.  But for the mature athlete that has a solid history in the weight room attaining this status of being “strong enough” for baseball is within reach.

Reasons why you Absolutely need to train absolute/max strength:

  • Great tool to add lean muscle mass that is needed to throw hard.  Mass=Gas
  • Teaches proper movement – every athlete needs to be able to perform movements like squats, hinges (deadlift) and lunges in order to help teach stability for the long and loose players while increasing mobility for the tight individuals.
  • Due to the nature of baseball it gets its fair share of athlete’s that aren’t “gym strong” due to long and loose limbs.  This type of strength is exactly what these kinds of athlete’s need.
  • This type of strength is thought to be the foundation that other types of strength are built upon.  An analogy is that this type of strength is the size of the cup that you can fill with faster types of strength which means that it is your limiting factor.
  • Can help avoid injury by being able to help absorb the high amounts of stress to the body causes by the very fast and sometimes violent act of pitching.
  • The fact that the pitching motion begins from a dead standstill off of one leg means that this specific limb and portion of the delivery does need a healthy amount of good old fashion strength.

How to To Assess Absolute/Max Strength

Now that we have covered the pro’s and con’s let’s talk about the specific exercises that we can use to assess this type of strength.  Below is another force-velocity curve but this time it has some of the common types of strength training used to focus on each portion of the curve that we can use to put some objective numbers on each type of strength.

Image result for force velocity curve

Powerlifting is the type of training that is associated with max strength and the speed’s we see here are typically from 0.15 to 0.3 m/s.  In the sport powerlifting you combine your 1 rep max totals from the big 3 exercises which are the squat, bench press and deadlift.  Whoever has the highest total wins!!

As a baseball player you don’t need to compete in the sport of powerlifting in order to get some of the benefits that come with performing the big 3.  We can adapt these lifts to suit your body type and aim for a couple of extra reps (2-5) at the faster end of the spectrum so that you don’t have to stress your body to the max.

We always have to remember that we are exercising in the weight room to get better on the mound.  This is important because it will direct us to using versions of the big 3 which will help minimize the risk while still allowing you to reap the rewards.

Let’s check out the big 3 and how we can use them to help throw harder and stay healthy.


In powerlifting the back squat is used because it is the method that allows you to lift the most weight which isn’t always a good thing.  What if I told said you still get the benefits of developing strong legs and hips while lifting less weight which would place you at a lower risk of hurting your back.  Would you be interested? If you end goal is producing results on the mound then your answer should be yes.

But if you are going to back squat remember to take your antropometrics into account like we see here comparing how leg length plays a role in “how” you squat.

Image result for squat mechanics

Here are a couple of my favourite options that are very challenging and can still be loaded up with lots of weight.  But the chances of turning it into something like the picture we saw earlier are reduced.

  • Front Squat
  • Double KB Front Squat
  • Safety Squat
  • Rear Foot Elevated Split Squat

Here is an example of how strong you can get with the rear foot elevated split squat with two time Olympian Meghan Duggan.  Remember that the pitching delivery is initiated with just one leg on the ground which makes this exercise more specific.

Bench Press

This is one that gets thrown out the most in regards to the big 3.  Read this from a much smarter & experienced Eric Cressey to see why he’s doesn’t use the traditional bench press with most of his baseball players.

The long arms really play against you here.  Great bench presser’s have short arms and a big barrel chest which means that the bar doesn’t have to travel as far they to touch the chest like the rules of powerlifitng state.

Image result for bench press competition

The long arms with a narrower chest means that you have to move a lot further which is a disadvantage but it also puts you at risk of injury.  This longer path means that your elbow have to go a lot further past the level of the bench which pushes the humerus really far forward in the socket which isn’t a good thing.  So don’t worry the next time the guy that act’s as the “gym police” comes by and tells you that the bar has to touch your chest.

Image result for bench press

I realize that the guy in the second picture is using DB’s rather than a straight bar but you should get the idea of how we can restrict the depth.

Floor presses are a favourite of mine since it automatically restricts the depth.  Other than using this you just have to be aware of how far down you’re going.  Don’t go for that “deep stretch” feel.

Image result for floor press db


Deadlifitng is the one time it helps to have long limbs as can be seen in the picture below because you don’t have to go down as far to grab the barbell and your hips are in a more mechanically strong position.  In fact rumour has it that Lamar Grant, the first human to deadlift 5x his body weight, could scratch his knees while standing without having to bend over.  Go ahead, stand up and give that a try.

Image result for deadlift biomechanics

But just because you might have a physical advantage with the deadlift doesn’t mean that you should try to push the upper limits just to impress other people in the weight room.  Remember the goal is to impress people on the mound.

Here is a video that I put together for a team that I consulted with about how to Deadlift for baseball with some modifications and restrictions so that they could reduce the risk while maximize the rewards of this great lift.  As far a alternatives go check out this awesome single leg version demonstrated by a “Strong” Marcus Stroman.

This is a wonderful movement because it has such a high level of skill which makes it a self limiting exercise.  This means that you technique will fail and you won’t be able to lift more than you should.  These types of exercises are great for the young male population since we have been know to load up the bar with too much weight trying to impress other people.

So How Strong?

Great question.  Here are some numbers that I’ve come across in my research on track and field throwing.  These are just guidelines that these coaches have put in place to help them determine the amount of time and energy they spend on these lifts – guys that have met these standards focus on the faster end of the spectrum and technique to turn that force into more power.

Javelin – 800g/1.8lbs/29 oz (almost 6 times heavier than a baseball)

  • Squat – 2x Body Weight

Discus – 2kg/4.4lbs/70 oz (14 times heavier than a baseball)

  • Bench Press – 400lbs
  • Back squat: 450 lbs

Shot Put – 8kg/17.6lbs/280 oz (56 times heavier than a baseball)

  • Bench Press – 350lbs
  • Squat  – 450lbs

These types of athlete’s rely a lot more heavily on absolute strength so we can just look at these numbers as a reference but I don’t see why we would need more than this just based on the fact the we only use a 5 oz baseball.  Plus we have to spend a lot more time and energy working on the other components of the game like developing pitches, holding runners and fielding our position.

So here are some number’s that I think we can shoot for as minimum’s by the time the athlete is roughly 18-20 years old, both chronologically ad biologically.  If you aren’t at this level remember to take your time and don’t rush.  One of the best things about this type of strength is that it can be developed for a long time as you get older.  Meaning that as athlete’s get older they may loose little “spring in their step” but they can continue to get stronger which may be able to help compensate for the reduction of “springyness”.  Check out my article on elasticity to learn what “springyness” means.

If you watch the World’s Strong Man you don’t see some young phenom in his early 20’s killing it like you do in other sports.  That’s because strength takes time to build so even if you are “naturally” strong it is a process to build world class strength that we see these athlete’s produce.


I like to use checklist’s because they let you know if you are ready or not for the next level.  Ideally you have a  qualified S&C coach sign off on whether or not you had good enough technique (quality) to deserve going in in load (quantity).  I would look for 4-8 reps GOOD reps on each where you have to make it look easy before moving to next one – this goes for both the bench pressing and deadlifting checklist’s seen below.

  1. Body Weight Squat with Good Technique (quality first!!!)
  2. Goblet Squat w/ 50 lbs
  3. Goblet Squat w/ 85 lbs
  4. Front Squat w/ 135 lbs
  5. Anderson Front Squat w/ 135 lbs

Repeat number’s 4 & 5 in increments of 10 lbs all the way to 225 lbs & beyond!!  Remember to add in some rear foot elevated split squat’s – see if you can build up to match Meghan Duggan’s total of 160 lbs x 10 reps.

Bench Pressing

Remember that you won’t impress anybody with your bench press if you were born to throw plus it isn’t the greatest for your shoulder joint.  So here is my simple checklist.

  1. Pushup (quality first!!!)
  2. 1 arm Floor Press – feet wide (check out the picture earlier)
  3. 1 arm Floor Press – feet narrow
  4. Alt DB Press

repeat number’s 2-4 in increments of 5 lbs DB’s all the way to 70 lbs and beyond!!  But don’t abandon the pushup which can be loaded and progressed.


  1. Dowel Hinge (quality first!!!)
  2. Kettlebell Deadlift up to 32 kg
  3. Elevated Deadlift
  4. Deadlift from the Ground -see video

repeat number’s 3 & 4 in increments of 10 lbs all the way to 275 lbs & beyond!!!  Be sure to add in some of those single leg deadlifts too.  They can also add strength while making sure that you body is balanced.  Can you be as strong and smooth as Marcus Stroman and his 106 lbs in each hand?

The number’s that you build yourself up will differ from athlete to athlete their is no doubt that everyone needs some form of the big 3 in their program.  But the intensity, type and frequency will depend on so many things like:

  • limb length
  • mobility
  • injury history
  • age
  • training age
  • movement skill
  • time of year
  • ability to produce elastic energy
  • role on the team

There are more but this gives you an idea of why the prescription of “getting stronger” will be different for everyone.  If you want some help in trying to figure out what fits you then contact me at graeme.lehman@gmail.com.

Next we will check out the next portion of the force-velocity curve and the controversial use of Olympic Weight-lifting.

Graeme Lehman, MSC, CSCS