Big League Combine – Player Selection

Since it’s NFL combine season and as an exercises science nerd it is one of my favourite times of year when I get to watch these world class athletes display their physical abilities.  My love for the NFL combine is what made me write my most  popular blog post of all time, which you can read here, where I described the athletic tests that I think should be included into a combine for baseball players. 

Since the time I published that article I have had a lot of conversations with coaches (both strength and baseball coaches) from all over the place and I get asked what I would do with the results of these tests in two different situations:

1 – Selection of players:  How can I use these numbers to help scout players and get an idea of their ability to play at the next level

2 – Training current players: What do the results of each test tell us about what this player needs to work on in order to reach the next level.

I am going to try to answer these two questions as best I can without giving away all of my trade secrets in what is looking like a three part series.

Player selection – scouting and tryouts

The first step is to obviously run all of the players through the combine that I described in the first article.  It gives us great deal of information about a bunch of different athletic qualities rather than just straight ahead speed like the 60 yard dash does.  There would be some more tests/assessments that I would do but I will get to those later.  My reason for not including these new tests in the previous article is that they either didn’t fit the criteria of being easy to implement or they are something I didn’t think of until after I wrote that article back in the summer of 2013.  I’ve learnt a lot since then but I do stand behind all of the tests that I picked.

We have all these numbers, now what??

After you run your players through these tests you’re just left with a bunch of numbers.  The good news is that these numbers actually mean something since each test was picked based on the fact that it has some correlation to the kind of athletic ability needed to play baseball, read the original article if you don’t believe me.  While these numbers are great they just really give scouts and coaches the ability to rank players based on their athletic ability.  But since we are trying to put together a baseball team and not a track and field squad we can’t base our entire selection on these performance based tests.  You need some skill to go along with this ability.

What these tests do provide are some quantifiable and objective numbers that can be combined with the scouts subjective assessment of their ability to play baseball in order to make a better decision.  Click here to see some of the quantifiable numbers that player who have been drafted out of high school or who got signed internally can produce.

sub vs ob

Ideally we want to have players with a lot of physical ability (objective) that also have a lot of skill (subjective).  Not everyone is going to have a lot of both but if you want to play baseball at a high level you’re going to need a combination of skill and ability.

To illustrate this point I’ve created this chart to show how a player needs both skill and ability to make it to the major league level, which I have arbitrarily set at the 300 mark. 

pitching chart 2.002

Each player has both skill (green) and ability (blue) but you can’t make it to the show with just one because I have also set a limit of 200 that you can get from either skill or ability.  This means that you need to sure up your weakness in order for you to display your strength.

The two guys in the minors need to work on their respective areas of weakness to make it to the majors.  The AAA “pitcher” knows how to pitch and has a complete arsenal of pitches but just doesn’t throw hard enough to compete.  This guy needs to improve physically with a good weight training program coupled with some better rest, nutrition along with a throwing program that is going to help him throw harder.

The guy in AA needs a change up or something else to go along with the blazing fastball.  The ability to locate this fastball would be helpful too.

So who do you pick??

Do you pick the skilled player or the athlete with lots of physical ability?

Scouts and coaches every year have players that they are high on and like in regards to their make up and how they play the game.  But they are forced to pass on them because they know this player doesn’t have enough power to keep up at the highest levels.  After all you can’t teach speed and you can’t teach size, right?  I think you can.

Historically baseball teams have selected players because they have some raw athletic power and physical ability in hopes that their coaching staff can teach them how to pitch or hit.  These players are then labelled as “projects” and sometimes they work out and sometimes they don’t.

I am going to make an argument that we can go after that skilled player and train them to be better athletes.  You would think that as a strength coach I would want the super athletes but baseball is so highly dependant on skill that I think some of these guys are worth the chance of becoming a project.  Because as tough as it is to teach size and speed its not easy to teach someone how to locate a change up with movement.

This is especially true if a player shows that they have room for improvement from the physical side of things which when coupled with time and effort can allow these changes to occur.

Below is the ideal situation of a highly skilled pitcher that has been through 4 years of executing both a tailored weight training and a throwing program (long toss, weight balls, etc) that suits his needs as an athlete.  This SMART and HARD training has provided him with the ability to throw harder so that he can display his skills in the MLB.   I understand that this idea isn’t anything new but I think that it could happen more often if a player has the room for growth and is given the necessary tools and knowledge to improve.  This is where the initial testing comes into play.

pitching chart 2.001

*Disclaimer:  Even the best strength training in the world won’t turn a non-athlete into a world class baseball player.  We are looking at taking someone from good to great not taking someone from bad to great.  The great news is that a lot of teams might pass on the “good” player leaving him available.

Undersized and Underpowered???

Any player that isn’t athletic enough to play at the next level is always lacking power since it is the number #1 athletic quality needed to succeed in baseball.  If they are lacking power then they are either not producing enough speed or strength since the basic formula for power is:

FORCE x VELOCITY = POWER

This formula looks pretty cut and dry but there are different combinations of athletic ability and physical features that can produce big league power.  Some athletes rely more on the force side of the equation because they have a lot of strength and body weight.  While other use more of the lean on velocity side of things with their long limbs, big ranges of motion and their reactive strength vis stretch shortening cycles to produce whatever power they can.sanchez storman

If we look at the Blue Jays pitching staff for example two
of their brightest stars are Marcus Stroman and Aaron Sanchez.  Both of whom can throw really hard but go about it in different ways.

From this example we can determine that these two players use very different combinations of strength/force and speed/velocity to produce power in the form of throwing velocity. This means that we can look for these different combinations by studying their athletic profiles which is something that I produce based on all of the tests that I run baseball players through.race car one

This athletic profile is similar to what you would see in a
car racing video game.  These two cars are different in regards to the specific amounts of power, weight and grip they have but both are capable of going fast and winning races.

They just have car 2different strength’s and weakness’ and it really depends on how you drive the car which determines if you can take advantage of the strengths while minimizing the weakness’s.

The athletic profiles that I created below are those of what I imagined both Aaron’s and Marcus’ would have looked like when they were being scouted in high school.

I will get into some of the various tests that I would add like limb length, mobility and elastic energy but for now we can just see that there are many different athletic qualities that need to be observed.  If all we did was measure the 60 yard dash to determine athletic ability we would only really have “speed” and “elastic energy” to go off of.

Aaron Sanchez 

pitching chart 2.003

While this would be a profile of a shorter more athletic Marcus Stroman.  As you can see they are very different from one another but they both work.

Marcus Stroman

pitching chart 2.004

*I know that these profiles aren’t exact and there are many arguments that could be made but my point is to look at players with different combinations of athletic ability and how they can ultimately produce the same end result of throwing really really hard even if they don’t fit the prototypical “profile”

Next I’ll explore explore both force and velocity individually a bit more and provide some examples of further tests to see if an athlete can make some improvements in these areas.

Graeme Lehman

Long Toss – Part 3 – How Stressful is Long-Toss on the Arm???

This article is going to focus on what’s known as the kinetics which looks at how fast body parts are moving and how much force is being produced whereas part 2 focused on the kinematics.  Studies that look at the kinetics are important because they give us some great information that is hard to get.  Almost anyone with a camera can look at their own unique kinematics but we know that throwing a baseball is a lot more than just what someone looks like in these freeze frames.

Seeing how fast you’re moving and how much force you’re both producing and absorbing is a little more complicated.  Its a lot more expensive too.  That’s why we rely on the exercise science labs of the world which have both the expertise and the equipment.  They can measure things like rotational velocity of a joint or the amount of torque being applied at the shoulder.

The two labs were I am drawing my information from for this article are associatedjobe
with either Dr. Frank Jobe and Dr. James Andrews.  Baseball’s two most famous surgeons.  Since these studies come from these labs it’s easy to understand why they are mostly focused on exploring long-toss from an injury prevention and rehabilitation scopes rather than the performance enhancement.  Pretty much every study on long-toss out there is focused rehabilitation which is where we got this whole 120 feet max distance stuff from.  

As a performance enhancement coach this kind of information is worth its weight in gold even if its focus is looking at injuries.  Any time I select an exercise I have to look at it from a Risk vs. Reward point of view.  These studies won’t tell us much about the kind of reward (mph’s on the mound) we can get but they can let us know how much torque and force is happening at the elbow and shoulder (risk).

Before get going I want to point put that I have been learning a lot lately from Kyle Boddy’s Driveline’s blog with Dr. Buffi’s guest post’s.  Dr. Buffi discusses the short comings of inverse dynamics which is how this and most studies have computed kinetics.  It’s some pretty complicated stuff and I look forward to understanding it better in the future.  For now I am going to go with the numbers and stats from these published studies.  The good news is that even if the numbers aren’t completely accurate it is the method that they used for both long toss and pitching so at least we are comparing apples to apples here.

What’s Faster?  Pitching or Long-Toss?

I’m not talking ball velocity here but rather the velocities that happen at various joints of the body.

There are plenty of studies that show a direct correlation between how fast body parts (trunk & shoulder rotation) are moving and the velocity of the ball.  However the correlation however is not 100%. You don’t have to be moving as fast if you have a lot of body weight behind you creating momentum. 

The way they measure speed however is not in MPH’s but rather ˚/s (degrees per second).  Rotating your hips from facing third base to home plate would be 90˚ and if it took your 2 seconds you would be rotating your hips at a rate of 45 degrees per second.  This isn’t very fast at all but it paints a nice picture.

The table below again is from the Fleisig and Andrews study that I went into great detail with in part 2. Everything is measured ˚/s and the the column on the far right that’s labelled (% of pitch) looks at the ˚/s  compared to pitching.  So anything above 100 would mean that the joint is moving faster during max distance long-toss than it was when pitching.  

Joint 

Pitch

Max

% of Pitch

Pelvis

568

621

109

Trunk

1120

1179

105

Shoulder IR

7640

8040

105

Elbow Ext

2480

2603

105

While everything is faster when long-tossing the only one that was not seen as being significantly different between pitching and long-toss was shoulder internal rotation speed. 

Let’s look at each one in more detail.

Pelvis and trunk rotational angular velocity:  This describes how fast these two segments rotate.  They would place a marker on both hips and connect them to make an imaginary line.  This allows them to calculate how fast the hips rotate and they would do the same with the shoulders.

As you can see the shoulders rotate a lot faster than the hips do but that is how pitching works.  The legs and hips do the heavy lifting to get the momentum going so that things can move faster and faster as we move up the chain.  They didn’t say exactly at which point of the delivery the hips and trunk reached their peak velocity but if you want any hope of throwing hard you better make sure the hips go before the shoulders.

Shoulder internal rotation: this is the bio-mechanical stat we hear the most about because it is the fastest movement in any sport on earth.  The arm bone (humerus) rotates internally within the shoulder socket (glenoid fossa of the scapula) at an alarming rate.  Having the ability to really externally rotate your arm gives you a bigger range of motion that is needed to build up to this kind of speed.

Elbow extension velocity: as you rotate your entire body around your elbow goes from being bent at around 90˚ when the front foot hits the ground and then starts to straighten out as you release the ball and being your follow through. Pretend you’re doing a really, really fast triceps press down.  This rapid extension places a lot of stress on the biceps muscle since its job is to help control this rapid extension so that your elbow doesn’t come apart every time you throw.  

How much force/torque????

When studies look at the amount of force (aka torque) that happens when we throw a baseball they normally focus on the elbow and the shoulder since these are the two most injury prone areas.  

The point in the delivery that produces the highest level of force/torque is when the arm is cocked back which occurs when the shoulder is maximally externally rotated.  Its this position that is hardest on both the ulnar collateral ligament (UCL) which can lean to Tommy John surgery as well as the anterior capsule of the shoulder which can lead to a superior labral anterior-to-posterior (SLAP) tear.

The force that we are most concerned with are elbow varus torque and shoulder internal rotation torque which we can see below.

varus force

This doctor above is performing an elbow varus force test which is used to check the UCL integrity.

shoulder ir

This doctor here is applying some torque shoulder internal rotation torque by pulling his right arm and the players right wrist towards the doctor’s body causing more internal rotation. This is a position can be risky since your throwing arm has less internal rotation compared to your non-throwing arm.  If you have ever done the sleeper stretch then you know what shoulder internal rotation torque feels like. THis risky position plus too much force is the reason why some experts don’t like this stretch and if you do perform this stretch it is done with very little force.

sleeper

Pushing too hard with your left hand in this case would be increasing the “force” which in turn would be increasing the “torque” shown in this nice diagram below.

newton

Efficient vs. Inefficient Throwing

The point of having “good” mechanics is that it allows you to produce the kind of force and torque needed to throw a baseball really hard.  And the harder you throw the more force you’re going to need to both produce and absorb.  This is just the cost of doing business.

The thing we don’t want to have happen is when we have more torque on the arm without seeing any increases in velocity.  This is a bad trade off and this type of throwing would be labeled as inefficient.  If you could throw harder while having less torque on the arm that would be called efficient throwing.

The throwing velocities between long-toss and pitching weren’t significantly different from one another and the chart below is going to show how much force is happening at the elbow (varus torque) and shoulder (internal rotation torque) when the arm is cocked back.

long toss kinetics.004

I haven’t touched on the throws from other distances (120 &180 ft) but I wanted to add them here to give more context.  All of the throws allowed for a crow hop except for the mound.

Since velocity was pretty much the same at all of the distances the most efficient throwing is the one that has the least amount of stress.  And in this study it was that magical 120 foot distance that so many MLB teams are fans of restricting their players to going.

What about the mound and the crow hop?

The two biggest differences between long-toss and pitching are how they create momentum.  Pitching uses the mound and long-toss uses the crow hop. In order to get a better idea of how each of these contributes to the kinetics of the arm and shoulder we need to look at them separately.

This is where I wanted to touch on this other study from Slenker et al. (2014) because they measured throwing from 60 feet 6 inches with and without a mound.

They also threw from 90,120 & 150 but not max distance which is why I didn’t look at this study as much.  They were only allowed to crow hop on the 120&150 foot throws and were instructed to throw “hard, on a horizontal line”.

This gives us one throw from a mound, two throws from flat ground without a crow hop (60’6″ & 90′) and finally two flat ground throws with a crow hop (120’&150′).

The subjects in this study were on average 23 years old, 6 feet tall and weighed 183lbs.  Of the 29 subjects there was one player from minor’s (A ball) , 3 players from a local club team and 25 college players from 3 different colleges.  The main thing here is that even with a pro ball guy the average velocity off the mound was only 33 m/s which is about 74mph.

Even with this lower velocity there are still some good take aways from this study. The main one being throwing efficiency which we can see with the following three charts.

long toss kinetics 2.003

long toss kinetics 2.004 long toss kinetics 2.002

Again that 120 foot mark is the safest but when you take velocity into account it is not the most efficient.

In fact the loads on the elbow and shoulder were not significantly different between mound pitching and any of the distances from flat ground. Interestingly flat ground throwing from 60’6″ was one of the most inefficient.

The authors went so far as to say:

This illustrates the mechanical advantage and increased efficiency of throwing from a mound, implying that it might be protective for players to start throwing from a mound or incline earlier on during the rehabilitation process.

This is a huge statement since we have always been blaming the mound and its slope for arm problems.  Maybe we need to be going back to higher mounds in order to reduce the stress on the arm?

Could this be the reason why we didn’t see as many arm injuries before 1969 when they changed the mound height to restrict it to 10 inches.  The previous rule was that it was limited to a height of 15 inches but there are reports of some mounds being as high as 20 inches.

We have this guy to thank for lowering the mound after arguably the most dominating season ever in 1968.

gibson

Bob Gibson 1968 season

IP – 304, ERA – 1.12, SO – 13, K’s – 268, WHIP – 0.853

I think the use of mounds of varying slopes could be used as a form of training much like under and over weight baseballs.  Over speed training at its best – more of this to follow in the final part of this series.

When looking at the velocities the throws with the crow hop were also slower compared to throwing from the mound which wasn’t the case in the Fleisig study. Compared to the results from throwing off the mound the throws at 120 feet were 79% of the mound velocity while the stress at the elbow and shoulder were both 82% of what was seen on the mound.  At 150 feet the velocity was only 70% on the mound velocity while the elbow and shoulder stress was 88 and 91% respectively.

Of the two distances in this study the 120 ft throws were more efficient.

Here is what the authors had to say about the use of a crow hop:

The use of the entire body, or kinetic chain, with a crow hop while throwing on flat ground appears to be less stressful on the upper extremity and should be emphasized of even the shortest rehabilitation throws.

We are getting closer and closer to bottom of this long-toss subject.  But every time I find an answer it leads to a couple of more questions.

The next part will look at some distance and velocity correlations to see if throwing farther actually means you can throw faster.  This will then be followed up by an article where I try to sum everything up and provide some useful tips on how and when to apply long-toss.

Thanks for reading.

Graeme Lehman, MSc, CSCS

Long-Toss Part 2 – Mechanical Differences and Similarities

It’s been a long time between part 1 and part 2 of this series on long-toss, pun intended.  My two main excuses are that I got side track preparing for my presentation at Lantz Wheeler’s Pitch-a-Palooza in Nashville but it went well and it provided me with a ton of great info from the other speakers.  Check out the DVD sales here.

Pitch-A-Palooza-Logo

And my wife and I also got a puppy border collie named Saige (Satchel + Paige = Saige) and walking this high energy breed has become a part time job for me.

In part one of this series I stressed that long-toss is a tool that is classified as a specific exercise that coaches can use to help increase throwing velocity.  It however is not the only tool for the job.  General and specific exercises that can also be beneficial when the situation calls for it.

We also learnt that long-toss and pitching are not the same thing.  Long-toss is throwing the ball up and far with a crow hop versus pitching which is throwing the ball down and fast without a crow hop. While these differences are pretty obvious these two types of throwing do share some similarities.  After all they both involve throwing a baseball as hard as you can.

Knowing what’s different and what’s similar between long-toss and pitching is valuable.  This information can help coaches determine if and when long-toss should be used as a means for improving pitching performance.  If a pitcher needs help with a mechanical issue that has been shown to be very similar between long-toss and pitching then it would seem that it is a perfectly good idea to implement long-toss.

sim and diff

For now I am just going to present the research in a easy to understand manner, I hope.  I am going to save my opinions, thoughts and interpretations for the last part of this series.  Well I might go on one or two rants but thats it.

The study that I am going to be referencing is from doctor’s Fleisig and Andrews called:

Biomechanical Comparison of Baseball Pitching and Long-Toss: 

Implications for Training and Rehabilitation.

They published it back in 2011 and it is the only study that looks at the biomechanics for both max distance long toss and pitching.  There are a couple of other studies (Slenker et al. 2014 & Miyanishi et al. 1995) but they either didn’t look at the kinematics (motion) or didn’t have their subjects throw off a mound.

The subjects of this study on average were 20.6 years old, 6’2” tall and weighed about 195 lbs. Their velocity off the mound was 37 meters/second (85mph) while the long-toss was 36 m/s (82mph), this difference isn’t statically significant.  The max distance throws averaged 260 feet with a range between 213 & 315 feet.

When it comes to reading studies it’s important to look at the subjects to see what kind of players they used in regards to level of play, age, height and weight. Not every coach is going to have players that are similar to the subjects of this study so they must take this information and figure out how it applies to their specific situation with the athletes they are coaching.

This study looked at the biomechanics (aka kinematics) of each player at three different points of the throwing motion for both long toss and pitching: (1) front foot contact (2) arm cocking and (3) ball release.  They also looked at the kinetics (torque and force) but I am saving that for part 3.

wagnerIf you look up “arm cocking” in the dictionary you will see this picture of Billy Wagner.  Defined as the point of the delivery when the shoulder is maximally externally rotated.  It doesn’t get much more externally rotated that this!

Front Foot Contact: Differences

The chart below shows the exact differences that were labeled as significant between long-toss and pitching.

Front Foot Contact
Body Position Pitching Long Toss
Elbow Flexion (degrees) 78 86
Upper Trunk Tilt (degrees) 6 24
Front Knee Flexion (degrees) 47 42
Foot Position (centimeters) 25 5

Elbow flexion: if you were to make a perfect “L” with your arm you would have 90 degrees of elbow flexion.  Pitching had the elbow in more of a flexed position.  You can see a nice diagram below with elbow flexion in the top left corner (A) and Mr. Maddux (you get called mister when you win 4 Cy Young’s) looks to have about 90 degreesc of flexion.  While this Vanderbilt player is displaying less flexion.

Front knee flexion: the front leg landed in a more extended/straight  position during long toss.  Having your leg straight with the knee locked out would be zero degrees of knee flexion while being in a seated position with the tops of your legs parallel to the ground would be 90 degrees.maddux elbow at contact

long toss vandy

Upper trunk tilt: this is basically how much an incline your upper body is when the front foot hits the ground.  If you are leaning back you will have more upper trunk tilt and if you were to be straight up and down (head over top of your belt) you would have a trunk tilt of zero.  Obviously if you’re going to be throwing the ball high and far you’re going to be more inclined.  That being said hard throwers off a mound do a better job of staying back and not lunging or drifting out onto their front leg, which would produce upper trunk tilt scores in the negative. The amount of trunk tilt is very different between the two and is obvious in these pictures.

Foot Position: This was measured in centimetres.  If your front heel made a perfectly straight line with the heel from your back leg you would have zero.  During the long toss the front foot landed in a much more open position compared to throwing off the mound.

Front Foot Contact: Similarities

The other mechanical positions that the researchers measured at front foot contact that were not significantly different between pitching off a mound and long toss were:arm angles

Shoulder External Rotation: pitching had 53 degrees of external rotation at front foot contact vs. 58 degrees.  This difference wasn’t significant enough but it is about 10% more with long-toss. Top right (B).

Shoulder abduction: how far the shoulder is away from the body which were both between 96 & 98 degrees angle from the body.  If you place your elbow perfectly at shoulder height you will have 90 degrees of shoulder abduction. Bottom Left (C).abduction

Shoulder horizontal abduction:  if you stretch your pec muscles by grabbing onto a post then moving your body forward and turning away you would be horizontally abducting your shoulder from your body.  Figure (D) shows horizontal abduction when the arm is going behind the body.  Pitching and long toss both had 21 degrees of shoulder abduction.

Pelvis angle: this tells us how “open” the hips are.  If have your hips perfectly facing home-plate that would be 90.  Pitching had 37 degrees while long-toss had your hips in a more open position, but only by 3 degrees at 40.

Stride length: this one surprised me a bit but I guess the momentum gained from the crow hop is equal to the amount of stride distance that you can get by going down the mound.  Both types of throwing had players striding 80% of their height.

Arm Cocking: Differences 

This position is critical due to the fact that many injuries happen at this point of the delivery.  The injuries might not be due to what your mechanics look like when your arm is cocked but it is the position that has a lot of stress and can very easily be the straw that backs the camels back.  The arm cocking position is occurs when your arm is maximally externally rotated and is making the transition between loading (going back into external rotation) and unloading (going into internal rotation).

Arm Cocking
Pitching Long Toss
Max Elbow Flexion 101 109
Max Shoulder External Rotation 174 180

Elbow flexion:  Just like at front foot contact the elbow is in more of a flexed position when pitching compared to long-toss.  The elbow was more flexed back when the front foot hit the ground.

bauer elbow 4

It wouldn’t be a long-toss article without some reference to Trevor Bauer.  He is close to the arm cocking position and looks to have more elbow flexion than the subjects in this study.

Max Shoulder external rotation: this is a big one because the amount of external rotation that you can achieve has been correlated to throwing velocity since it provides you with a greater range of motion that can be used to apply more force to the ball.  Check out this article to learn about another study that showed how the amount of external rotation along with a couple of other mechanical points were important in determining which pitchers threw fast vs. those that threw slow.

Quick rant/opinion:  Since long-toss as an exercise produces more external rotation (ER) compared to pitching might mean that it could be used as a training method to get more external rotation.  Which if you don’t have enough in the first place could be a good thing.  However there are some pitchers that have more than enough ER and they need to work on controlling their ER and improving the rate at which they go from ER into internal rotation.  This goes back to the fact that long-toss is a tool and in some cases this tool can be helpful.

machine_flyArm Cocking: Similarities

Only one of three mechanical points measured were similar and that was the amount of shoulder horizontal adduction.  If you were to perform pec flys on this piece of equipment you would be doing shoulder horizontal adduction as you bring your hands together.

I am just using the pec fly as an example since we have all done one or two sets of these but I am not recommending it as an exercise if your primary goal is to have a healthy throwing arm.

In both types of throwing the shoulder has gone from being horizontally abducted (behind the body) when the foot hits the ground to being adducted (in front of the body) to 17 degrees.

Ball Release: Differences

This table shows all of the significant differences between the two types of throwing at ball release:

Ball Release
Pitching Long Toss
Forward Trunk Tilt 34 18
Front Knee Flexion 37 31

Forward Trunk Tilt:  The ability for a pitcher to produce forward trunk tilt has been shown to be a major factor in separating fast from slow throwers.  When long-tossing it is pretty obvious that you won’t have much forward trunk tilt because if you did you would end up spiking the ball.  When your goal is distance the body is going to organize itself to accomplish this desired outcome hence less forward trunk tilt.

mad tilt

Front knee flexion:  again the amount of flexion at the front knee is different just like it was at front foot contact.  The interesting part is that the amount of knee extension that happens from when the front foot hits the ground to ball release is nearly the same but it just happens in slightly different ranges of knee extension.  This table will show you what I mean:

Amount of Front knee extension (front foot contact – ball release)
Mound Max Distance
Front foot contact (FFC) 47 42
Ball Release (BR) 37 31
FFC – BR = Degrees of Knee Extension 10 11

If you had a higher number at ball release compared to front foot contact that would mean that you went into knee flexion.  That has been shown to be a marker of slower velocity throwers while faster throwers exhibit the strength to handle the landing forces and produce knee extension. It helps send kinetic energy up the chain as they say in the world of pitching biomechanics.

Ball Release: Similarities

Shoulder abduction: both types of throwing had the shoulder abducted to 88 degrees which is close to the ideal 90 degrees which is stated as being the best angle to produce torque and force.  Based on where the shoulder was during front foot contact the elbow drops from about 10 degrees during the throwing cycle.

Lateral Trunk Tilt: This describes the amount of leaning towards your glove side.  I’ve written in the past about a research article that studied the effects of lateral trunk tilt and its relationship to both throwing velocity and torque to the throwing arm in a two part series here and here.

Personally I thought that there would be more trunk tilt for long-tossing based on how I see most people throw for max distance including outfielders and javelin throwers.

cespodis

Based on Yoeonis Cespedes’ amazing throw he made last year we should all just throw like he does.  Looks like a bit of lateral trunk tilt to me. 

In Japanese study back in 1995 (Miyanshi et al.) one of their major findings was that in addition to a more backward lean, similar to the findings in this study, was more of a left ward lean producing increased lateral trunk tilt.

This study did compare max distance throwing to max velocity throwing from a flat ground surface which is why I haven’t talked about it much.  That and I could only find the untranslated Japanese version of the study.

That however didn’t stop me from looking at the study which in addition to some pretty awesome stick figure drawings had some tables with numbers, which I can read in just about any language.

The more “leaned back and tilted” position resulted in the ball being released at a height of 1.78 meters (5’10”) at an upward angle of 30.3 degrees.  The distance they threw the ball was about 76 meters (250 ft) plus or minus 7 meters (23 ft).

When they threw as fast as they could (flat ground) the release height was 1.64 meters (5’5″) at a 6.3 degree angle.

Just like the Fleisig and Andrews study the stride lengths weren’t significantly different but were only 73% of their height.  These subjects were on average 20 years old and were 160lbs and 5’9″.  They only threw about 67 mph.

Digging a Little Deeper Into the Numbers

When I looked at the amount of knee extension in both types of throwing I started to look deeper into some of the other differences to see just how similar they were.

As it turns out the ranges of motion that we see in both pitching and long-toss are pretty similar, it just that they happen at different points within the range of movement.

The amount of “loading” that you shoulder goes through as it externally rotates from front foot contact to ball release were only one degree off from each other.

Shoulder External Rotation
Long Toss

Pitching

Arm Cocked (AC)

180

174

Front Foot Contact (FFC)

58

53

AC- FFC = Total ER Loading

122

121

The amount of elbow extension that happens when you elbow goes from a flexed position at front foot contact to a less flexed position during the arm cocking position are both exactly 23 degrees.  Weird, I know.

Elbow Flexion
Long Toss

Pitching

Arm Cocked

109

101

Front Foot Contact 

86

78

Difference

23

23

Even the total amount of trunk tilt in the sagittal plane (front and back) from front foot contact (upper trunk tilt) to ball release (forward trunk tilt) was similar.  During long-toss the subjects were leaning back to 24 degrees and moved their trunk forwards 42 degrees to the point of ball release when they displayed 18 degrees of forward trunk tilt.

When pitching the upper trunk tilt was much lower at front foot contact (6 degrees) but moved a total of 40 degrees to the 34 degrees of forward trunk tilt at ball release.

This picture of an overhead medicine ball throw shows you what I mean by how amount of trunk tilt that happens during the throwing motion from lean back to leaning forward.

 mb tossLots of trunk movement in the sagittal plane from the 3rd picture to the last one.

Since this now past the 2500 words mark, congrats if you’ve made it this far, I am going to end things here.  The next part will look at the differences in torque (kinetics) and the amount of stress on the throwing arm before I finish things off with some of my thoughts on how long-toss should be applied.

Graeme Lehman, MSc, CSCS

Pitching Seminar Annoucement – I am Super Pumped!!!

In one month I have the honor of presenting at this year’s Pitch-a-Palooza hosted by Lantz Wheeler in Nashville, Tennessee.  It is quickly becoming the premiere pitching seminar in all of baseball.

Lantz runs BaseballThinkTank.com which is an incredible resource for pitching information not to mention the fact that he works with some guys that can reach triple digits!!!

think tank

I should have mentioned this earlier but I am busy trying to put a really good presentation together because as you’ll see from the line of speakers below I have some really big shoes to fill.

The line up of speakers is incredible and I am really humbled to be part of it all.  I am just thankful that Lantz stumbled upon this site a couple of years ago and found the information that I’ve presented to be thought provoking and useful.

I am not sure if many people that read this site live in the Nashville area but I would suggest trying to get down there to be a part of this seminar.  If you can’t make it I know that Lantz records the whole thing and sells the DVD’s which would be great since you can watch it over and over again.  Here is where you can get more info on attending or buying the DVD’s.

While I am excited that I get to present I am equally pumped to learn from the other presenters. Here is a list of the presenters along with Lantz Wheeler and myself.  The coaches that I am mentioning are just from the pitching side of things – check out the whole line up here.

Paul Nyman:  the “Godfather” of Modern Day Pitching Mechanics.  This guy is a legend which is why he has gotten the highly coveted “Godfather” status.  Check out his paradigm shifting work at Setpro.com.  Click here to read the “Best of Paul Nyman” on Lantz’s site.

paul

Derek Johnson: pitching coordinator for the Chicago Cubs and former pitching coach at the Baseball Power house known as Vanderbilt University.  Coach Johnson is also the author of the “Complete Guide to Pitching” which is a great resource.

cubsa

Kyle Boddy: probably the biggest pitching nerd out there, I mean this in a good way.  He runs Driveline baseball in Seattle and has pushed me to become bigger and better pitching nerd as well.

driveline

Matt Blake: this guy has my dream job being the pitching coordinator at one of the best gyms in the world, Cressey Performance.  This however happens to only be one of his many baseball related jobs.

cressey

The following college pitching coaches are presenting.  If you don’t know who they are that’s because they are too busy coaching and don’t have as much to write about it and promote themselves.

Scott Brown:  Pitching coach at Vanderbilt University.  Winners of the 2014 NCAA World Series Champion.  Pretty impressive.

vandy

Butch Thompson: Pitching Coach at Mississippi St. University.  Runner up in the College World Series in 2013 and has 25 pitchers in the MLB Baseball.

miss state

Blake Herring:  Pitching Coach at Carson Newman University

carson

Kevin Erminio: Pitching Coach at Kennesaw St. University

kennesaw state

I will be sure to follow up with a re-cap of the seminar with some high lights of what I learnt from this amazing seminar.

Graeme Lehman

Follow

Get every new post delivered to your Inbox.

Join 189 other followers