Category: 5 Tools

Over-Speed: Customized Training and Mechanics Series

The athletic attribute of “over-speed” wasn’t even on the original profile that I first created over 3 years ago but I think it’s important enough to add it in.  So here we go!!  Check out the new and improved graphics.

It’s not that important where I put it on my profile but it is important that we know where “Over-speed” sits on the force-velocity curve.  Over-speed isn’t represented on many force-velocity curves but if it was it would be at the extreme bottom right-hand side of the graph.

Coaches in other sports might put any type of over-speed training into the “speed” category.  But in baseball I think it deserves its own category because we use it a lot with training tactics and tools like:

  • Long Toss
  • Run n’ Gun Throws
  • Underweight Throws

Over-speed training in other sports might consist of an athlete running downhill or, if you see an athlete using bands to jump higher and faster like you see below you’ve witnessed some over-speed training.

In golf, you might see some athletes doing their best impression of Happy Gilmore.

Basically, anything that allows you to go faster than you would during the actual sport is over-speed.  And while throwing a baseball is very fast there ways to go faster. Namely by reducing the weight of the ball and/or adding momentum prior to throwing.

Now we can focus on trying to figure out how much over-speed we need.  Obviously, we want to really high levels of this type of athleticism due to its specificity to pitching. This is the reason that throwing programs that included some or all these types of over-speed training have been so successful.  Programs built by Jager or Driveline come to mind.

Assessing an athlete’s over-speed abilities is simply a matter of measuring the speed and/or distance of some various throwing drills.  Once we’ve done that we can start to put together the athlete’s “throwfile”.

The “throwfile” is a mini-profile that sits inside this bigger and more comprehensive athletic profile that I’ve been building.  It focuses only on various types of throws and its high-level of specificity is the reason it gets its very own profile within a profile.

The word “throwfile” is not trademarked yet so feel free to use it all you want.  I will really dig into this concept in my next article but in the meantime here’s a simple example of what I am talking about.

Below you will see some numbers from 3 different pitchers from the College of Central Florida Patriots a couple of years ago when I worked with them remotely.  I picked these 3 athletes because they all threw 86 mph from the mound at the time of the testing.

Here we see their results from their long toss testing where we had them throw with a crow hop and the constraint of a stationary throw.  The goal with both was to throw the ball as far as possible.

The right-hand side of the table has their testing results with Run n’ Gun throws using a 4, 5 and 6-ounce baseball.  If you don’t know what a Run n’ Gun Throw is here is an example of a long time client of mine Isaac Greer hitting 109mph at Driveline with a  3oz ball.   Based on this assessment I told him he needed a hair cut.

Looking at athlete “A” right off the bat, I think that he needs to spend more time and effort getting faster.  He has the lowest long toss scores and he can barely throw harder than his mound velocity when he adds momentum and throws a lighter ball.

While athlete “C” looks like he needs to get stronger because of the fact that he has the biggest drop off’s when the momentum is restricted and when the weight of the ball goes up. Typically if you slow down when the weight goes up it means that you aren’t strong enough.  We saw this with the weighted jump research that I highlighted in this article.

Image result for disclaimer

*Mechanical Disclaimer: this information is only good if the pitcher has somewhat proficient mechanics both on the mound and while performing long toss.  If not the numbers are useless.*

By using this kind of simple data we can really make good use of this information by helping the individual get better. We’ve all seen the guy who can long toss the s*#t out of the ball during the pre-game but then can’t come close to reaching the same high level of velocity from the mound.  I call these guys “over-speed all-stars”.

My theory with “over-speed all-stars” is that the added momentum allows the athlete to take full advantage of their elasticity which they can’t fully exploit while on the mound.  This is similar to how if you perform a drop jump you should be able to jump higher since there’s added momentum during the loading phase to cause more of a stretch.  This augmented stretch during the eccentric loading causes an enhanced stretch-shortening cycle which plays a vital role in sporting actions that take place in short periods of time such as throwing and jumping.  In fact, 50% of the energy produced during a throw is thought to be contributed to the elastic properties in and around the shoulder (http://scholar.harvard.edu/files/ntroach/files/roach_et_al_2013.pdf).

The reason these guys can’t reproduce this effect when on the mound is that they don’t have enough strength and power.  Without the crow hop, they don’t have the ability to produce enough of a stretch to elicit a big-time stretch-shortening cycle allowing them to take advantage of their over-speed abilities.

Analogy time: It’s like if you had a Drag Racer that was really fast when it reaches the fifth gear but it took you almost the whole quarter mile long track to get through gears 1 to 4.

So, for example, if your long toss with a crow hop is way further than your long toss from a stationary position, you have a good 5th gear but your gears 1 through 4 need some work.  What I am trying to say here from a sports science point of view is that long toss with a crow hop is essentially a drop jump while a stationary long toss throw could be considered a countermovement jump.

If we can make these assumptions then we can steal a concept from the sports science world knows as the reactive strength index (RSI) which I’ve covered in the past.  Basically, you look at the difference between a drop jump and a countermovement jump to help determine how an athlete produces force and what adjustments should be made to their training program as a result of this information.

This is something that I will explore in my next article.

Graeme Lehman, MSc, CSCS

 

 

Advertisements

Do Radar Guns Help Us Throw Harder?? Scientific Research Says “Yes!!”

Here’s an article that falls under the category of “studies you should know about”.  In the past, I’ve written a bunch of these and in essence, is the foundation of this website.  Check out a couple of them like this one about how long distance running inhibits power or this one about 3 mechanical factors that positively influence velocity.

For a lot of you out this one might also fall under the category of “I Already Knew That”.

Image result for i already knew that

If you’re one of these coaches then here’s some scientific proof to back you up.  If you didn’t, then keep reading about this study.

Frequent Immediate Knowledge of Results Enhances the Increase of Throwing Velocity in Overarm Handball Performance (Stim and Pori 2017)J Hum Kinet. 2017 Feb; 56: 197–205.

Although this study did not use baseball players I still think that this information is very relevant.  Plus, some of the best information we can get come from other sports, check out this article I wrote about what we can learn from track & field sport of shot putt.  In this case, the sport that this study focused on was handball which obviously isn’t very popular in North America but if you check out the video clip below I think that you will gain some appreciation for the sport.  And if you’re a college coach or a scout it might make for a good excuse to go oversea’s for a recruiting trip to Europe.  Ironically I am writing this article while in Europe but I haven’t seen any handball yet, only soccer. Lots and lots of soccer.

Image result for fastest handball shot

Ironically I am writing this article while in Europe but I haven’t seen any handball yet, only soccer. Lots and lots of soccer.

The Design of the Study

Both groups of subjects performed 2 sets of 10 throws at max effort two times a week for 6 weeks in addition to their normal handball training.  The only difference was that one group got feedback in the form of velocity for each throw while the other group did not get any feedback at all.

So why is feedback so important in throwing?

Feedback lets you know how you did and when we throw its hard to get accurate and objective feedback in regards to velocity.  If you shoot a basketball, too steal an example from Lantz Wheeler, you get feedback on every shot and therefore you quickly learn if what you’re doing is getting you closer to your goal.  We get this kind of feedback when we throw with respect to accuracy but not velocity.  Of course, we get some subjective feedback from our throwing partner but that’s not very accurate and as a result, we can’t make any positive adjustments.

Image result for feedback loop

Here are a couple of quotes from this study that explains why we can’t get the type of feedback we need when we throw:

Due to its ballistic nature, an overarm throw is performed in a short space of time and is controlled based on an open-loop system, which is a feed forward process and has no feedback (Magill, 2011).

Due to a time limitation, the motor program controlling the involved effectors (muscles) containing all the information needed to carry out the throw is generated in the brain prior to the throw; there is no time to continually register, evaluate and implement the information to control the movement while it is in the process.

Every time we throw we do get what’s called “task-intrinsic” feedback from our sensory and perceptual systems.  An example of this would be those throws that felt effortless and the ball just jumped out of your hand.  But if we don’t know for sure that this throw was any faster or slower than other throws how are we supposed to make positive changes?

This is where augmented feedback comes in.  This is information that we can’t perceive on our own and in our case, and the case of this study, that’s knowing the velocity of each throw.  The radar gun gives us augmented and extrinsic feedback, compared to the intrinsic, that’s both quantitative and subjective.  This type of knowledge has been shown to outperform qualitative feedback for learning. (Bennett and Simmons, 1984Magill and Wood, 1986Reeve et al., 1990Salmoni et al., 1983).

Does it work?

In this study, each group increased their throwing velocity but the group who were told the velocity of each throw improved to a greater extent.  This study cited another study using tennis players who increased their serving velocity when they were given augmented feedback as well.  So, yes it does work!!

Image result for tennis serve speed

Here are some other points from the study that are worth talking about.

Frequency

In this study, every single throw in the 2 sets of 10 throws was measured, for the feedback group.  Would the results have been as good if they were only told the velocity of every second throw?

That’s tough to say and it might be worth doing a research project to find the optimal amount of frequency feedback.

There has been some research in this area done by Wulf et al. (1998) who studied the influence of the KR (knowledge of results (aka feedback)) frequency on learning the complex skill of skiing slalom.  They observed that the group with 100% of KR achieved higher performance than the group provided with 50% KR.

This could carry over to baseball since it too is a complex movement. To steal another idea from Lantz Wheeler, every throw is different.  He uses the example of how it’s impossible to sign your name the exact same way every time so how can we expect to repeat our mechanics on each throw?

The point I am trying to bring up is that the frequency of feedback is important.  If you were only told every tenth throw how hard you threw it would be difficult for you to put the pieces together because by the time you threw another ten baseballs you might be doing things differently.

Just to be clear, I don’t think that we have to have a radar gun with us every time we play catch.  But on the days that you’re trying to improve your velocity, it might be a good idea to have some type of accurate feedback.

Timing of Feedback

If you don’t get feedback right away it’s really hard for you to figure out what you did right or wrong.

Let’s say that you came out of a game and found out that you were throwing harder than ever.  That’s great news but its really hard to think back to what exactly you were doing (or not doing) that enabled you to light up the radar gun.

Image result for it's too late meme

So if you are going to use feedback from a radar gun you should find out the results after each throw.

Bonus Info: Weighted Ball Information!!!!

One of the pre & post test’s that were performed in this study was a velocity test using a heavy handball.  A normal handball is 375 grams (about 13 oz) and the heavy ball that they used during the testing was 800 grams (about 28 oz).  The sizes, diameter wise, were the same.

The results were interesting in that both groups improved their heavy ball velocity despite the fact that they did not use them during the training process.

However, the group that got feedback improved to a greater extent.  The improvements were lower compared to the normal handball due to specificity but it does prove that there is some carry over from using balls that weigh more.

And no, there was no mention of any of the subjects needing Tommy John surgery after throwing a heavy ball.

Image result for no surgery

This is interesting, to me anyway, because of the huge difference in weights.  The heavy ball, in this case, is more than double and I’m sure if they analyzed the mechanics of the two they would see a big difference.  But at the end of the day, they are similar enough to one another to show some positive carry over between the two.

To explain how this might work the authors offered up this great quote that I will end the article with:

Perhaps this finding can support the generalized motor programme theory of motor learning, which states that a pattern of movement rather than specific movement is programmed and can, therefore, be flexible to meet some altered environmental demands .

 

Different Arm Slots = Different Mechanics???

Categorizing pitchers based on their arm slot is easy.  You can see it with your naked eye and the language within baseball already exists.

But is arm slot the only mechanical difference between these types of deliveries?  And if they are different doesn’t this mean that we as coaches should have some cues and training methods that vary across the arm slot spectrum?

These are the questions that I am interested in and I am going to my best to answer the first question of mechanical differences with some information from some recent research.  This type of knowledge is useful because when we do go and categorize pitchers based off of their arm slot it will provide a deeper base of knowledge.

“Categorization is the process in which ideas and objects are recognized, differentiated, and understood”. The primary task of categorization is to “provide maximum information with the least cognitive effort”.  Rosch, 1978 – Principles of Categorization

I am all about this quote, especially that last part about the most information with the least effort.  This might be the new motto that I use when trying to write an article.

Here’s the research paper that I am using for this article.

Differences Among Overhead, 3-Quarter, and Sidearm Pitching Biomechanics in Professional Baseball Players (Escamilla & Fleisig – 2018)

I highly suggest you take a look at it because their main findings of which arm slot is at a higher risk for sustaining either a UCL or SLAP tear is interesting and very important.

What I am going to do is look at differences between these arm slots:

  • Overhand – Less than 40 degrees
  • Three-quarters – Between 50 & 60 degrees)
  • Side Arm – More than 70 degrees

When it comes to vital aspects of pitching mechanics when it comes to producing velocity like:

  • Amount of External Rotation
  • Hip and Shoulder Separation
  • Front Leg Action
  • Back Leg Action
  • Forward Trunk Tilt at Ball Release

**They didn’t include any pitchers that threw with arm angles that were in the 40-50 & 60-70 degree range in order to make the distinctions more clear cut**

Before we get into the small variations between the mechanics of pitchers with different arm slots at these critical points let’s look at the obvious differences.  Shoulder abduction and contralateral tilt are two factors that play the biggest role in determining where that arm is in relation to the body.

Shoulder Abduction

One trait that separated all three groups from each other is the amount of shoulder abduction at ball release.  All three groups had fairly similar angles of abduction when the front foot first hit the ground (89-OH, 89-3/4, 84-SA) but by the time the ball was being released the difference were significant.  The OH group ended up with the most at 94 degrees while the ¾ group stayed nearly the same while the Sidearm group dropped their elbow slightly down to 81 degrees.

This is in-line with other research that states that in order to produce the most power the shoulder needs to be in and around the 90-degree mark of shoulder abduction since this is the strongest angle.

Contralateral Tilt

The biggest contributing factor to arm slot is the amount of contralateral tilt.  In the past, I’ve written about contralateral tilt here and here.  Its basically describes how far your upper body is tilting to the side in order to allow your arm to be in its desired arm slot while staying near that magic 90-degree mark.  The contralateral tilt for this skinny guy below is the difference between his sternum (aka breast bone) and the vertical line labeled “Z”

 

The numbers for this group were as follows

These are significantly different from one another but again was obvious.  Although it is nice to put some hard numbers to these traits in order to add some depth to our categorization system.

Now that we got that out of the way with let’s dig into the smaller differences so that we can add more intel into our already existing categorization scheme.

The Details

I picked these parameters based on other research like this which I wrote about here.

Hip and Shoulder Separation

This study did not tell us how much hip an shoulder separation occurred but one thing that I found to be interesting was the timing between peak pelvic and shoulder rotations.  Each group displayed a delay and separation between the hip’s and shoulder’s each reaching top rotational speeds towards home plate but the timing was different for each arm slot.

The really cool and high tech graphic below is a visual representation of the timing between the hips (triangles) and the shoulders (lightning bolts) and when they reached their peak velocity in the delivery.  The timing values that we see are in the form of a percentage between 0%, the point when your front foot hits the ground, and 100%, when the ball is released.

 

One might think that the group who reached peak rotation of the hips the soonest would also be the first group to have their shoulders reach top speed.  That is not the case.

The sidearm group in yellow rotated their hips later but their shoulders sooner while the Overhead group had the biggest amount of time between these two events.  When we look at exactly how fast the hips are rotating in degrees per second the sidearm group was significantly faster than either of the other two arm slot groups.  Maybe this groups uses the added time to build up more hip rotation velocity?  Maybe they rely more on a “rotational” type of delivery versus a linear??  These are just some of the many follow up questions that happen every time I learn something new.

It should be noted that the Sidearm group also landed with their foot in a closed position which means that their hips didn’t have to rotate as much.  We don’t know exactly how much rotation is occurring since it isn’t reported but we can make this assumption.

Another interesting point is that the Overhead group reached their peak hip rotation the earliest while their shoulders reached their peaked the latest.  This, in essence, would provide more time to created hip and shoulder separation.  More time can lead to the POTENTIAL of creating more force but not always.

Here are the speeds that the hips and shoulders rotated

Max External Rotation

Another key piece of information is that the Sidearm group has significantly more external rotation at the shoulder joint than either of the other two arm slots.  The Sidearm throwers average 169 degrees of external rotation whereas the Overhead and 3/4’s displayed 162 & 163 respectively.  

More ER allows for added time to have force applied to the baseball which is good but some pitchers may be able to reach elite levels by internally rotating faster with less ER.  This is tough to coach but its still good info.

Wikipedia’s Picture for the term “Lay Back”

It should be noted that upper back mobility (t-spine) can add to external rotation of the shoulder for that overall “lay back” position of the forearm.  Maybe the other two arm slots allow for more T-Spine Extension and Rotation which make up for the lack ER at the shoulder.

Front Leg Action

The action of the front leg is vital.  Harder throwers extend their front leg between the time that the front foot hits the ground to the time when the ball is released.  Or at least stays the same angle.  

All three groups displayed this critical mechanical principal in varying degrees.  The Sidearm pitchers landed at front foot contact (FFC) taller with the leg being the straightest at 39 degrees but only extended a little bit to 37 degrees at ball release (BR).   This isn’t a lot of movement and would look more like landing on a stiff leg.  The ¾’s group had the greatest amount of extension with 8 degrees going from 43 at FFC to 35 at BR.  The overhead group displays the most amount of knee bend at FFC (44) upon landing and extends to 39 degrees.  Keep in mind that the front leg will keep extending after the ball is release which gives these kinds of images of pitchers really getting aggressive with that front leg so that they can catapult baseballs out of their hands at incredible speeds. Like we see here with Otani.

Back Leg Action

The information that we get about the back leg is minimal.  No force plates were used to see how much energy is being produced and when it’s being applied and in which direction.

We do get the max height of their front knee when they pick that leg up during the windup which can tell us a bit about how they are using their bag leg.  We also get to see how much “pelvic drift” occurs when they are at max knee height.  This term “pelvic drift” is how much the front hip is leading towards home plate.

What we see is that the Sidearm group is significantly different than the 3/4 and Overhead groups who were almost identical to one another.

The sidearm group of pitchers didn’t lift their knee as high but lead with their hips more than the other groups.  Here’s a famous sidearmer displaying some “pelvic hip drift”.  His knee lift looks high but when you look at it relative to his standing height, like they did in this study, its pretty low.

Image result for randy johnson mechanics

Its a far stretch but you could try to build an idea in your head about how a pitcher uses their back leg with these pieces of information.  Lifting your front knee higher does give you more opportunity to apply force into the ground since the left leg (for righties) has more time and distance to build up speed as it comes back down towards the ground helping to add to the overall amount of force going into the ground.  The more you put in the more you can get out.  In theory.  But it works for jumping with aggressive arm actions downwards prior to take-off.  Just watch the NFL combine this year and you will see crazy arms actions prior to take-off in both the vertical and broad jumps.

I remember hearing a story that Nolan Ryan simply told Tom House to “put that into your computer” when described how he felt about the relationship of lifting his leg higher and throwing harder.

Image result for nolan ryan mechanics

The info about the amount of hip drift can be massaged into getting an idea about the direction that they are applying force into the ground.

We know that we need to get force back from the earth going in the direction of where you want to throw the ball.  But if our lead hip has been pushed out front we’ve created the opportunity push into the ground with your back leg in a bit more of a horizontal angle rather than pushing straight down into the ground like you would when testing your vertical jump.

Teaching someone about to maximize the exchange of energy between how much we put into the ground and how we get back is vital.  Its easier to explain with something simple like the vertical jump since the energy is being exchanged in opposite directions.  One of the many, many reasons that pitching is complicated is that you have to master exchanging this energy going in different directions.  We have to go from applying force into the ground vertically and getting it back horizontally towards home plate.  The degree of just how vertically we are applying force into the ground can vary from pitchers to pitcher.  If we look at the guys in the previous two pictures, who happen to be number 1 and 2 in all-time strikeout in the MLB, we can see that Mr. Johnson is must be applying force into the ground more horizontally than Mr. Ryan.  Here’s another high tech graph to show you what I mean.

Here we see how they have both altered the shin angle of the back leg during this exchange of putting energy into the ground and then getting as much of it as we can, in a controlled yet powerful manner, back towards our target.

Image result for nolan ryan mechanics

Image result for randy johnson mechanics

Just to clarify, I am stretching this information that I’m getting from a real study into these ideas.  But I think that they make a little bit of sense otherwise I wouldn’t have spent so much time writing about them.  Sounds like something that I need to explore and elaborate on more in a future article.

Forward Trunk Tilt

The amount of forward trunk tilt at ball release is another biomechanical point that has been shown to correlate with velocity.  This study had the “fast throwers” with trunk tilt of 36 degrees while the “slow thrower” was more upright at 28 degrees.  All three of the various arm slot group were within this range.

This piece of information is interesting as well.  Not only does forward trunk tilt provide an advantage from an effective velocity point of view since the release point is closer to home plate.  We can also think of forward trunk tilt as providing more time to create more power as well.

Wrap Up

There will obviously be variations within each arm slot itself and some of this information might not apply to every pitcher.  The aim here was to at the very least add this information into an already existing categorization scheme of pitchers based on their arm slot.  The goal would then be to take this information and formulate ideas of how we should adjust our training and coaching to these athletes with different approaches to a common goal of throwing hard, safe and accurate.

That’s the tough part but I hope this is a step in the right direction.

Graeme Lehman, MSc, CSCS

Speed : Customized Training & Mechancis Series

Today’s focus will be on that speed portion of the force-velocity (F-V) curve.  This is exciting, to me at least, because throwing a baseball over 90mph requires a healthy does of speed.

For all of the articles that I’ve written about the F-V curve in this series about Customized Training and Mechanics I’ve used the picture that you see below which looks like it was created with sprinting being the sports specific action in mind.

So far I’ve gotten away with copying the exercises listed on the chart because we were talking about parts of the curve like strength, strength-speed, power and speed-strength that are pretty far away from where throwing a baseball would be located on the curve. In other words they are general and not specific. But now that we are getting closer to where pitching sits on the F-V curve we need to be more specific and that means we need to be throwing things and see how fast and/or far they go.

So to customize this F-V curve for pitching I would replace resisted sprints and sprinting with different types of throws.  Don’t get me wrong I like to get pitchers to sprint but throwing is a lot more specific and as a result we can use it to assess our pitchers to see where they are deficient.  If we were to test their sprinting ability it wouldn’t have much carry over.  This was the case in my thesis where none of the running tests (60 Yard Dash, 10 Yard Dash, Pro-Agility) had any correlation to throwing velocity.

Here are a couple types of throws that are fast (not as fast as pitching) that I would put on our baseball F-V curve just to the left of where pitching would be:

  • Throwing a Football
  • Flat Ground Throwing – stationary

I make a point of adding in the description of “stationary & flat ground” because we can’t generate the same kind of speed under these constraints that we get from throwing a baseball off of a mound.  So things like the Run n’ Gun throws or long tossing with a crow hop are actually faster than throwing off a mound and as a result would fall further to the right on the curve and are considered to be “over-speed”.  I’ll write about over-speed in a future article.

But for now I wanted to give some insight behind both throwing a football and flat ground pitching (next article) since they can be effective tools to improving Speed.

Tossing the Old Pig Skin

Throwing a football is the old school form of weighted ball throwing. While I don’t have any studies showing that training with football throws increases your mound velocity I will point out that 100% of all pitchers in MLB history with more that 5000 strikeouts have been known to throw a football with regularity.  That’s enough evidence for me.

Obviously throwing a football is different than throwing a baseball.  This is a good thing because we only need it to be “specific” and not exactly the same as throwing a baseball.

Here are some highlights of a study that shows how the two types of throws compare to one another based on research by Doctor’s Glenn Flesig and James Andrews where they looked at the “Kinematic and Kinetic Comparison Between Baseball Pitching and Football Passing”

“maximum angular velocity of pelvis rotation, upper torso rotation, elbow extension, and shoulder internal rotation occurred earlier and achieved greater magnitude for pitchers.”

Pitching is just a lot faster.  The lighter ball, sloped mound and the downward aim makes your arm move a lot faster which is caused by the faster pelvic and torso rotation.  These factors makes the elbow extend a lot quicker along with more internal rotation caused speed and magnitude of the external rotation

How much faster is the arm moving you ask?

“Maximum Shoulder Internal Velocity for pitching averaged 7550 degrees per second while the football throws came in at average of 4950 deg/sec.”

That is a huge difference between speeds!!  What’s interesting is that the amount of external rotation between the two is very similar.

“The amount of external rotation with the baseball and football were 173 and 164 degrees respectively”

The weight of the football (14-15 oz) is what causes the arm to layback into that amount of external rotation whereas with baseball its caused more by speed.  When the shoulders rotate towards home plate the arm is slammed back into this layback position.  Hopefully it can “bounce” back into internal rotation without much delay allowing for those speeds that were already mentioned.  This would be the stretch shortening cycle at its finest which has been predicted to contribute to upwards of 50% of the energy needed to throw.

“Maximum shoulder external rotation occurred earlier for quarterbacks”

Since the ball is heavier it will take more time to go from eccentric to concentric actions with a longer isometric contraction in between.  This longer isometric phase is a result of having to stop the external rotation of the loading phase which tougher due to the extra weight.  This delay will kill a lot of the elastic energy from the stretch shortening cycle.  Quarterbacks do still rely of elastic energy but just not as heavily as a pitcher does.

“During arm cocking, quarterbacks demonstrated greater elbow flexion and shoulder horizontal adduction.”

Their elbow is more bent (aka flexed) and the elbow is closer to your side (aka adducted).  This is generally what happens when you hold onto heavier objects.

Training with a Football

The take aways here are that we can get the same amount of external rotation without as much speed.  The weight of the football also provides an overload stimulus for our eccentric and isometric strength when the arm goes from external to internal rotation.

So essentially we can use it to “stretch” the arm out while strengthening it.  Stretching and Strength!!!  Sounds good to me.

Throwing a football isn’t just about training your arm.  By dropping back into the pocket with a 3, 5 or 7 step drop back followed by a throw we are able to train the legs too.  The action of dropping back will create a significant about of momentum that must be decelerated then accelerated in the opposite direction in order to launch the ball down field.  The back leg is responsible for this action and the added drop back movement creates overload stimulus as well.   I also like how the shin angle created with the drop back is something that we like to see on the mound again making it somewhat specific.

Here we see Big Ben having to stop A LOT of momentum going towards his own end zone before changing directions and throwing a bullet.

Start off with the 3 step drop and you can eventually add more steps and speed to this drill as the legs get stronger.

If you do throw a football around at practice be sure to use a football that is age appropriate.  If the ball is too big for their hand they really can’t throw with enough intent because their attention and focus is on balancing the ball.  Even though everyone uses the same 5 ounce baseball it might be a bit much to ask a young pitcher to throw a 15 ounce football.  Here are the different footballs and their weight that you can gradually make your way through.

  • Pee-Wee: Ages 6-9 – 10 oz
  • Junior: Ages 9-12 – 11 oz
  • Youth: Ages 12-14 – 12.5 oz

Assessing with Football Throwing

The whole theme of this series is to assess different areas of an athletic profile to see where a pitcher needs to focus their time and effort.  Ideally I would give you some standards of how far or fast someone should be able to throw a football to see if they score well in this “speed” column.

I don’t really have set distances or velocities for football throwing to give you since they don’t really exist in any type of literature that I’ve seen.  This doesn’t mean there isn’t some type of relationship between the two types of throws it just means it hasn’t been tested.

Here’s a link of Patrick Mahomes throwing a football 62 mph (go to the 3:05 mark) and he was reported to sit around 93mph when he pitched in high school.  Here’s he is pitching.

Assuming that a pitcher knows how to throw a spiral I would think that there is a strong relationship between pitching performance in the form of velocity and football throwing whether it is velocity or distance.  At the very least it would be a stronger relationship than max squat or deadlift due to specificity.  In my opinion the strength of this relationship would vary depending on the type of pitcher we are talking about.  Your “power” pitcher with big strong legs like the Nolan Ryan’s of the world would have a better correlation since their body and mechanics are suited for throwing heavier objects.  While a weaker pitcher that uses a combination of long limbs, mobility and elastic energy might not be able to throw bombs down field.

So I am sorry that I don’t have any actionable items or data to share but I still think that throwing a football is great for training purposes.  If I had to suggest something based off my own anecdotal evidence that would be easy to implement and test I would like to see a pitcher be able to throw a football from home plate to second base.  I like this because its scalable for younger players on smaller diamonds with age appropriate footballs as well.  For the big boys the throw from home plate to second is about 42 yards.  If you can’t throw a football this far with a bit of an approach like a shuffle then I would suggest that you can benefit from time and effort training with a football to improve your strength which in turn can help increase your pitching velocity.

Hopefully this information is useful and if there is anyone out there that has played around with these two types of throws I would love to hear from you.

Graeme Lehman, MSc, CSCS

 

 

 

Customized Mechanics: Speed-Strength

Only a couple of more articles to go until I have finished this whole series on to customize pitching mechanics and training  to a specific pitcher based on their unique profile.  If you don’t know about this profile check out the graph below to see what I am talking about.

pitching chart 2.003

 

Here are links to the other parts of the profile for you to check out.  They are long and in-depth but I’ve been getting some tremendous response to this whole series which to me means that I am onto something big and hopefully it can help out a lot of people.

And here are a couple of extra posts that complimented this whole series:

Over all that’s a total of 16 articles and almost 30,000 words and there’s still at least 3 articles to go including this one which will focus on the role that speed-strength plays in the athletic action of pitching a baseball.

Speed-Strength is defined as “speed in conditions of strength”.  This means that speed is the first priority and strength is secondary.  So we will be using a light weight and we are moving it quickly.  How fast you ask? In the range of 1.0 to 1.3 m/s if we were to measure bar speed.

 

I’ve spoken before how the pitching delivery from start to finish looks a lot like the force-velocity curve going from left to right.  We start at a complete standstill (low velocity) and have to get our entire body (high force) moving and we end with our arm moving very fast (high velocity) with the goal of throwing a baseball (low force) as fast as possible.

To test a pitchers speed-strength abilities I would like to plead my case for some good old fashion medicine ball throws like we see on the force curve above as an example of what kind of training fits each part of the curve.

The fact that we are throwing something is huge since at the end of the day that’s we are doing on the mound which makes it specific to a certain extent. The act of throwing and letting go of the med ball is what allows us to achieve the kinds of speeds that we need in order to hit this part of the curve.  In the section on strength-speed I mentioned how when we lift a barbell a good portion of each lift is spent decelerating the bar even if our intent it to accelerate and the weight on the bar is low.

Which Type of Medicine Ball Throw Should We Test?

The type of medicine ball throw that I personally like is the scoop toss which I’ve also called the keg toss or backwards medicine ball throw for distance.  It looks like this:

The reason I like is that it is:

  1. safe
  2. easy to learn quickly
  3. easy to measure
  4. decent predictor of throwing velocity

1 – Obviously it being safe is the first and most important aspect of any test/assessment.  In the case of the medicine ball throw it doesn’t have any eccentric components so we won’t make our athletes sore from performing this movement.  The speeds that you can create throwing a medicine ball aren’t nearly as fast as throwing a baseball so their safe plus you’re using both arms and the elbow joint stays the same.  No Tommy John’s will be caused by performing this assessment.  The only way I can see someone getting hurt is if they throw it straight up in the air and having it land on themselves

2 – This brings me to point number two, its easy to learn.  After a couple of attempts most players will figure out their release point so that it maximizes distance, think launch angle.  I have seen a couple of a powerful athletes not score too well due to either pop ups or line drives but given time they figure it out.

And if they haven’t figured it out after a couple of weeks you can of this as a skills assessment because if they can’t figure out this release point good luck getting them to throw a breaking ball or change up for a strike.

3 – The scoop throw can be measured in a very objective manner with a simple tape measure.  Sure there are plenty of rotational medicine ball throws that are even more specific but they can’t be measured unless you have a really expensive medicine ball with an internal accelerometer.  I’ve seen research where radar guns have been used but I know that a lot of radar guns don’t do a great job of picking up slower speeds.   Plus not everyone has access to radar gun but a tape measure is pretty easy to get your hands on.

4 – In my thesis the strongest predictor to throwing velocity were the lateral jumps however the next best was the scoop toss.  Specifically with right handed subjects and their throwing velocity with a shuffle.  When combined with the lateral jump they scored an R2 value of 0.34.

Here is a scatter plot of med ball scoop throwing distance and pitching velocity with the College of Central Florida Patriots from 2017 when I was consulting with them.

Its a pretty strong correlation here but a couple of things are different from this data compared to the numbers I gathered for my thesis. The first is that this is just the data from the pitchers throwing from a mound whereas the data I had in my thesis had both position players and pitchers throwing from flat ground.

This team tested with a 6 lbs med ball and the average throw was just under 60 ft while the mound velocity for this pitching staff was 85.7 mph.  But as you can see from the graph there was one big outlier in terms of the throwing velocity and that is Nate Pearson who was only throwing 94 mph here.  I say only because he has been known to hit triple digits but this was in the fall of his first and only year at College of Central Florida.  He also ranked #1 in med ball throwing distance with a monstrous 73.5 ft throw.

Why is it a Strong Predictor?

Why does this test do a good job of predicting throwing velocity?  I can think of three major factors come into play that I think cause a relativly high correlation for throwing both a 6 pound medicine ball and a 5 ounce baseball.

The first is a that both require an athlete to produce high levels of speed-strenght. The other two are body weight and arm length.

Having longer arms essentially turns you into a human catapult so assuming you have the same level of speed-strength as your T-Rex teammate you should out perform them for this test.

Image result for trex hates pushups

T-Rex Hates Med Ball Throws Too

Being heavier has almost always been shown in the literature as a strong predictor for throwing velocity in baseball since the name of the game is transferring momentum to the baseball.  So more weight means you have the POTENTIAL to transfer more momentum to the ball no matter if it weighs 5 ounces or 6 pounds.

Since not everyone is going to be able to throw the med ball very far due to a potential lack in  speed-strength, arm length or body weight I wanted to end with an idea of how to test and train with the scoop toss.

Find a lighter med ball that you can throw at least 30 ft and stick with it until you can get beyond 60’6″.   This distance was selected for obvious reasons.  For young athletes use their age appropriate mound distance.

Once you’ve accomplished this goal you would then grab the next heaviest med ball and repeat the process.  Pretty simple, but not easy.

If you’ve made your way all the up a 60’6″ foot with a ten pound ball and you’re still aren’t throwing a baseball from a mound at 90mph or higher then you need to look else where for improvements because you have tapped out what you, as a pitcher, can get from the speed-strength column.

Graeme Lehman

It’s Time to “Drop” Bad Cues & “Drive” Towards Better Ones

First of all I need to apologize for that cheesy title but I really wanted to write this article even if I couldn’t come up with anything better.

My goal in this article is to convince you that we should do away with the terms “tall n’ fall” and “drop n’ drive” and replace them with words that do a better job of describing the athletic nature of throwing a baseball.  If you’re reading this site you probably don’t use these terms anyways but you will undoubtably come across some coaches that do because that’s what they were told.  So please show them this article which will hopefully at least start the conversation of how to improve things, even if you don’t agree with the changes that I suggest.

This is something that I’ve been thinking about for a while now but I finally got the motivation to put my thoughts down on paper because of this little guy in the picture below.  This is my son who is about 8 weeks old in this picture when I first measured his shoulder mobility.  Joking of course.

Only time will tell if he’s going to get into baseball but if he does I don’t want him to be subjected to this outdated and plain old bad coaching terms that I was.  Since baseball isn’t the fastest at doing away with the old and in with the new, I wanted to get the ball rolling on this terminology change now.

I have a particular hate for these terms because as tall kid I was told many times to be “tall” and then “fall” towards home plate in order to take advantage of my height and leverage.  This robbed me of what little athletic ability I had and in essence neutralized any leverage I possessed.  When I look back at pictures of me as a kid before I was “coached” my delivery was a lot more athletic than anything I could find from my days after I was exposed to the “Tall n’ Fall” strategy.  Pictures from my high school and college days are too embarrassing to post.  This is one of those cases where no coaching is better than bad coaching.

This post isn’t about me bashing my old coaches and blaming them for fact that I am not in the show right now instead of writing this blog.  The coaches I had growing were great men but they were doing their best with what they thought was the best information out there at the time.

So here is what I hope to give this great game by making my case for why we should adjust these terms to help future generations of pitchers.

Replace Drop n’ Drive with Dig n’ Drive

Replace Tall n’ Fall with Press n’ Pop

As you can see one of the four terms hasn’t changed and that’s because I went all Bruce Lee on the situation and absorbed some but discarded most of it.

Image result for absorb what is useful discard what is not

What to Absorb

Short n’ Sweet: coaching instructions need to be quick and to the point since the human brain can’t think about too much when its trying to perform a very complicated movement, like throwing a baseball past a hitter to a small location with runners on base.

The term “Drive”:  this is the one term out of the four that I want to keep since it is a great cue that conjures up images of being an athlete with the lower body.

Classification:  because we have used these terms for such a long time they’re a part of the baseball language which allows for better communication between all parties involved.  We all know that Randy Johnson is the poster child for the “tall n’ fall” style while Tom Seaver represents the other far end of the spectrum with his famous “drop n’ drive” technique.

What to Discard

I want to discard the terms “tall”, “fall” and “drop” since they’re passive and don’t come close to describing the kind of actions we would like to see from the lower body when the goal is to throw a baseball really hard.  If you tell anyone to be “tall and fall” you will basically paralyze that person from the waist down so in my opinion it has to be improved.

The same goes for term “drop” which doesn’t paint the kind of image we want our pitchers to think of when they need to load up their back leg and hip.  This is why I want to replace them with action verbs like “dig”, “press” and “pop” which do a much better job of painting a picture of what we need them and their muscles to be doing.

Even though we are simply changing a couple of words we have to realize just how powerful the words that we select are and the affect they have on our athletes.  And we can’t just keep using the ones that our coaches used because there’s a lot more information out there as to what works and what doesn’t work.

This information can be found in the scientific field coaching cues (if you’re looking it up on Google scholar or Pubmed type in “focus of attention”) and I’ve be very interested in this area since attending this presentation by Dr Nick Winkleman about 3 years ago.

Image result for what we say matters nick winkelman

This guy is the industry expert in coaching cues, in fact he completed his PhD in this field.  Dr. Winkleman was one of the first coaches at Athletes’ Performance, which is now EXOS, and his specialty was preparing NFL hopeful’s for the combine.  Despite his in depth knowledge of running mechanics and how to train these athlete’s in the weight room he wasn’t seeing the carry over that he wished for when it came to their sprinting ability.  This lead him down the path of studying the science of coaching and has since popularized, through articles and presentations, the research in this area that has always been thought of as more of an art than a science.

The most prevalent research out there now is the difference between external cues and internal cues.  An external cue places the attention of the athlete outside of their body whereas an internal cue places in their body.  For example here are two cues for jumping that are saying the same thing in different ways:

  • “push the ground away” – external cue
  • “extend your knee and hip” – internal cue

In the research external cues have out performed internal cues for athletic abilities such balance, power, speed and aim.

So external cues are better which is pretty clear but “fall” and “drop” are external cues as well so we have to take things a step or two further.  In order to make external cues even better let’s follow Dr Winkleman recommendations with what he calls the 3D’s.

Inline image 1

Distance – Generally speaking cues that shift your focus further away have outperformed cues where the focus is closer, link to article, even if both sets of cues are external.  For this particular cue with pitchers the furthest we can get is the mound when it comes to putting energy into the ground with either the DIG or the PRESS cue.

Direction – Here we need to think about whether we want to have our pitchers focus on moving TOWARDS home plate or moving AWAY from the rubber.  In some studies by Porter they looked at the difference in standing long jump ability when they told the athletes to either (a) jump as far past the start line as you can or (b) jump as close to the cone as possible.  When athletes were jumping towards a target, the cone, they performed better compared to when they were jumping away from a target.

This is one that we might want to be careful with since our goal with the back leg isn’t always to produce as much power as humanly possible since some pitchers can get carried away and cause problems with timing further up the chain.

It should be worth noting that if you have a strong athlete they might like focusing on driving away from the rubber as it allows them to generate more muscular force.  While your springy/elastic pitchers might like focusing on moving towards their focus.

Description – This is probably the most important component of putting together quality coaching cues because it puts things into context for the athlete.  Dr Winkleman talks about how we need to be careful about which action verbs we select because they define the spatiotemporal aspects of the movement.  Spatiotemporal means space and time, both of which are obviously pretty important when it comes to pitching.  As an example Dr. Winkleman compares the action verbs of push and punch.  Both can be thought of as performing the same action but if we punch, the action is going to happen a lot quicker compared to pushing.  In our pitching example the “drive” to me is slower than a “pop”.   In the next article I will explain my use of the word “pop” which my not be the best verb for everyone but its way better than falling.

Another important component of a useful coaching cue is to use analogies.  In sprinting for example, during the acceleration phase you might use the analogy of “taking off like a jet” to help communicate with the athlete that they can’t stand up too tall right away.

In our case with pitching I would try to paint the image of digging into the ground with a shovel.  Hopefully they get the idea that they have to put their weight onto that back leg to put some force into the ground.  This way you can elaborate a bit with the coaching cue by saying “Dig into the ground as if you were using a shovel”.  If the athlete doesn’t get the idea grab them a shovel since every baseball field in the world has a shovel or two lying around. Just be sure to find them a firm piece of dirt to work with!!

Inline image 3

On the other end of the spectrum the action verb of “Pressing” should also give the athlete a better idea of what’s happening with the muscles and tendons in the back leg.  You can paint the picture in the athletes head about how the mound can be one big spring that you need to press into in order to get energy back.

Inline image 1

In the next article I will elaborate on things a bit more as to why I choose these action verbs and which ones will work for which athletes.

Graeme Lehman, MSc, CSCS

Customized Mechanics – Weighted Jumps

When I started this series, which I hope to finish someday, the whole idea was to talk/write my way through a battery of tests and assessments that can be used to build profiles that give us a quantifiable data about each athletes physical abilities and attributes.  The goal then is to use this information to help adapt the training and coaching to suit the athlete and their unique physical profile.  Too often its the other way around where the athlete is forced to try and adapt to one type of training and/or coaching that may or may not be suited for them.  This approach will work for some athletes just by chance but if you want to increase your ability as a coach to help each athlete then we another approach.  To illustrate this point I will highlight a great research study at the end of this article which proves this point.

With this in mind I am really excited to be talking about weighted jumps because they’re a great tool to help build out some key parts of this physical profile concept.  Plus they’re an awesome training tool that can help increase the amount of power that our athletes can produce in a safe manner.  It’s awesome anytime we can pick an exercise that kills two birds with one stone saving both time and energy.

First lets talk about why they’re a great training tool before we get into the profiling part of the conversation.

To start weighted jump performance has been correlated to athletic performance with tests like vertical jump as well as 10 and 20 meter sprint times (proof, proofproof).  This should be enough reason to put them into your training but I will keep going on in case you aren’t convinced.

Weighted jumps as you will see in the force-velocity graph below fall between the “strength-speed” and the “Power” sections on the curve.  This “Power” section on the curve relates to a sweet spot where we can produce the most, you guessed it, power.  Remember that power is the product of Force x Velocity and when we use weighted jumps we have the ability to display the highest amounts of power compared to any other type of training.  When we look at heavy squats for example they have lots of Force but very little Velocity where as plyometrics or jump training has lots of Velocity but very little Force which causes both types of training to come up short when we measure how much Power they produce.

 

So just how Powerful are Weighted Jumps? 

Here is a link to a study that had a subjects produce upwards of 5783 Watts with weighted jumps while this study was a bit more modest but still had subjects pumping out 4600 Watts.  This might not mean much to you until you realize that elite level Olympic lifters who have spent years perfecting their technique and weighed around 220lbs produce 4700 Watts while other studies have shown numbers more in the 4200 and 4300 Watts range.

How to Do Them

Basically you just jump with a extra weight loaded to your body.  Ironically jumping with a weight is how Olympic lifting is often described when coaches tell you to “triple extend” through the hips, knees and ankles.   The two most common methods are either using a bar across your shoulders (back or front squat) or holding the weight in your hands like dumbbells or a hex bar.  The only risks that are associated with weighted jumps are during the landing because of the extra stress.  Be sure to practice these with lighter loads but they’re very easy to learn and get used to which again makes them superior to Olympic lifts.

With the weights in your hands it’s easier to decelerate and its also been shown to outperform weighted jumps when the bar is on your back in regards to the amount of power being produced, this study again.  By having the weight up on your shoulders your centre of gravity is higher making the landing a bit more difficult plus your neck/spine has to absorb the weight of the bar.  Its still a practical exercise but its just takes a bit more skill.

Here is an example of what I am talking about with two different types of loaded jumps.  This one above is of Isaac Greer who can throw in the mid 90’s and was just ranked #31 on Baseball America’s players to watch at the JUCO level.  I’ve had the pleasure of training him both in person and remotely since he was 14 and he has served as a guinea pig for me multiple times.  Here he is doing a weighted jump with 95lbs.  In his defence this was the first time we had done this type of drill so he was still getting used to it.

Next is a Hex Bar jump demonstrated here by the Toronto Blue Jays Nate Pearson who can reach triple digits!!!

This looks a lot smoother but that might be due to the fact that this wasn’t his first time doing this.  I have this video because he, along with his teammates at College of Central Florida, were asked to submit video of their training during the winter break.  So he had performed this exercise a bunch of times under the supervision of his coaches.  My only contribution was putting the program together and even though I was literally thousands of miles away from these guys I felt comfortable with them doing this simple exercise  so I didn’t think twice about adding in into the program.

How Much Weight

Depends on your goal because of the principal of specificity.  This means that if you want to get better at moving faster with lighter loads then this how you should train.  In this study they found that when subjects trained with weighted jumps that were only 30% of their 1RM squat they reduced their 20 meter sprint times.  While the group that trained using weighted jumps with 80% of their 1 RM ran slower times compared to the testing at the start of the study.

This isn’t to say that heavy weighted jumps are bad once you get used to them since I think they can play a pretty significant role in helping develop the kind of lower body power that we can use on the mound.  After all we are starting from a complete stand still on one leg which to me means that heavier jumping loads have their time and place.  This is especially true if you need to specifically develop this kind of strength.

But how do you know if you need this type of strength?  You test it of course and this is leads us to my favourite aspect of weighted jumps and that’s the profiling aspect.

Jump Profiling

By measuring your jump height with a wide range of loads you can cover most of the force-velocity curve.  From here you can compare these jumps to one another to see what your profile looks like.  I’ve mentioned the MyJump app before as being the best $7 I’ve ever spent but it just keeps getting better.  The app can do all the math for your which is backed up by study after to study to give you an accurate profile.  Depending on your results you might need to spend more time getting faster by developing your velocity or you might need to spend time getting stronger to increase your force.

Here is what Isaac’s jump profile looks like with a set of 5 jumps with different loads.

17.9 Inch Jump with No Load 

15.6 Inch Jump with 25lbs

This one isn’t quite the same as the others since it is a ball rather than a bar or a stick and if you watch closely you can see him drive the ball up with his arms which might have bought him a little extra force.  But I wanted something to fill the gap between the non-loaded jump and the 45lbs bar seen here.

13.7 Inch Jump with 45 lbs

12.1 Inch Jump with 65 lbs

9.1 Inch Jump with 95 lbs

When you plug this this info into a the My Jump App here is the print out you get that graphs these jumps with the insight as to what should be trained.  This print out has a lot of cool information like the how much force is being produced and how fast the athlete is moving but the main take away here is that it spells it out for you what the athlete needs.  And in this case is clearly says “Velocity is to be developed”.

I am still trying to learn this stuff a little better myself but its great that it tells you exactly what needs to be done.  If you want to learn more about interpreting these results check out this study.

These results make sense to me because this kid loves the weight room and hasn’t gone more than a couple of days in a row without going to the gym since I’ve known him.  As a result I’ve been trying to help him develop more speed since he is “strong enough” with some fancy training programs like French Contrast Training and Tri-Phasic methods that aren’t for everyone but can help those that have a solid foundation of strength.

This approach of prescribing exercises based on what the athlete needs based on their profile has been shown to work in research.  This is one of the better studies that I have read in a while since it took a customized approach rather than splitting subjects/athletes into two groups, control and experimental.  In this study they still used a control group but the experimental group was split into different groups based on the results of their vertical jump profiling.  After each athlete was profiled at the start of the study the subjects that needed to work on on more velocity were given a training program with more speed and speed-strength exercises while those that were deemed “force deficient” were given a program with more strength and strength-speed exercises.

But did it work?  It did work and the results were amazing!! In the experimental groups all 46 subjects improved their vertical jumping ability while those that weren’t given customized programs only  had 18 out of 38 subjects improve their scores with a “cookie cutter” program.

This shows how powerful this type of assessment can be and how it can help you make the most out of your time and energy.  This was the same type of idea that I was trying to describe in my Elasticity articles, here and here,  when we look at the difference between drop jumps, countermovement and squat jumps.

How does this relate to pitching?

Once you have this information what do you do with it?  Do you try to sure up your weakness’ or do you fortify your strengths?  When it comes to training in the gym the above study shows pretty clearly that you need to focus in the area that you’re deficient but when you’re on the mound you must rely on your strengths.  I would suspect that the athletes who are strong but slow would benefit from more of a drop n’ drive style of pitching and vice versa.  But if an athlete works on changing their profile they would also need to adapt their mechanics as time goes on to take advantage of their physical abilities and attributes.

All very complicated things I am still trying to wrap my head around.

In keeping with my goal of trying to keep this under 2000 words I will end things here before coming back with the next instalment in this series when we talk about speed-strength.

Graeme Lehman, MSc, CSCS